CHAPTER

Complex Integration

"The concept of definite integral of real functions does not directly extend to the case of complex functions, since
real functions are usually integrated over intervals and complex functions are integrated over curves.
Surprisingly complex integrations are not so complex to evaluate, oftenly simpler than the evaluation of real
integrations. Some real integrals which are otherwise difficult to evaluate can be evaluated easily by complex
integration, and moreover, some basic properties of analytic functions are established by complex integration
only."

2.1 LINE INTEGRAL IN THE COMPLEX PLANE

b

The concept of definite integral J f(x)dx, as studied in calculus of a real valued function fon a real
a

variable x, was generalized to line integral as applied to vector field in Chapter 6(Vol I). Here we

extend the concept once more and consider the line integral of a complex function. As in calculus of

a real variable, here also we distinguish between definite integrals and indefinite integrals.

Complex definite integrals are called the line integrals and are written as

j fz)dz.

The integrand f(z) is integrated over a given curve C in the complex plane called the path of
integration normally represented by a parametric representation
z(t) = x(t) + iy(f), ast<b.

The sense of increasing ¢ is called the positive sense on C. The curve C is assumed to be smooth
curve, thatis, it has continuous and non-zero derivative at each t € (g, b). In case the initial point and
terminal point of a curve coincide, thatis z(a) = z(b), the curve is said to be closed one.
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2. Sense reversal: J. flz)dz=- J flz)dz

Zo

3. Partitioning of path: J. flz)ydz= J flz)ydz + J fz)dz,
c

G G

where the curve C consists of two smooth curves C; and C, joined end to end as

shown in Fig. 2.2. <

4. ML-inequality: | J. flz)dz| <ML, A

C
where M is a constant such that | f(z) | <M everywhere on C and L is the length of Fig.2.2
the curve.

Example 2.1: Evaluate J Z°dz, where C is the straight line joining the origin O to the point P(2, 1) in
c
the complex plane.

Solution: The equation of the line OPis x =2y, 0<y <1.
Thus, dz =dx +idy = 2dy + idy = (2 + i)dy.
Also, 2% = (x +iy)? = x% - y* + 2ixy = 3y + diy>.

1 1
Hence, j Zdz = j (B +4i) 2 +i)dy = 2+ 11i) | y*dy = %(2 +11i).
C 0 0

Example 2.2: Evaluate § (z - a)"dz, where ais a given complex number, 1 is any integer and Cis a
C
circle of radius R centered at ‘a” and oriented anticlockwise.

Solution: Itis convenient here to use parametric equation of the circle in the form
C:z-a =Re® 0<0<2r, so dz=iRe®do.
2 2
Thus, § (z-a)'dz = J R"e"® iRe™® do = iR"*! J e D0 gg
c 0 0
_ Rn+1|e(n+1)i(-) |2“ _ R+

|n+1|O n+1

[62("”)"“ -1]=0, provided n # - 1.

Forn=-1,we have§ Ra®
e

2n 1 2n
= j iRel® 40 = iJ 40 = 2mi.
zZ—0a 5
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1+i

Example 2.3: Evaluate the integral J (x -y +ix)dz
! P(1,1)
(@) along the straightlinefromz=0toz=1+1i

(b) along the real axis from z=0to z=1and then along aline
parallel to imaginary axis fromz=1toz=1+1.

Y

Solution: (a) The equation of the straight line OP, refer toFig.2.3, © M, 0) > X
is y = x. Thus along the line OP, z = x + iy = x + ix = (1 + i)x, which _
gives dz = (1 +i)dx, 0 <x <1, and hence Fig.2.3

1+i

J (x -y +ix?)dz =

0

1
(v = x + ix)(1 + i)dx = i(1 + i)J el = - %(1 _i).
0

O Sy

(b) Along the path OM, we have y =0 and thus z = x + iy = x and hence dz = dx, 0 < x <1. Also, along
the path MP, we have x =1 and thus z =x + iy =1 + iy, and hence dz = idy, 0 <y < 1.
Therefore, the line integral

1+1 1 1
j (v =y + ix%)dz = j (x + ix%)dx + j (1 -y +i) (idy).
0 0 0

Example 2.4: Evaluate § In z dz, where Cis the unit circle |z | =1 taken in counter clockwise sense.
c

Solution: Any point on the unit circle | z| =1 in parametric form is z = ¢, 0 < 6 < 27, which gives
dz = ie"°d@. Thus the line integral becomes

2n 2n i i 2T
§ inzdz = | nePican=- [ oedo=- {e LN 1.7}
C 0 0 ! ! 0

] i

2mi
=_{2ne + ™ —1}2—2—,75 = 2mi.
1

Example 2.5: Evaluate § | z| *dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).
c
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Solution: The contour of integration Cis OABCO as shown in Fig. 2.4.

We have, |z|?= (x*+1?), and also along

Y
OA: y=0, 0sx<1, dz=dx, |z]°=2 t
. ) _. 2_ > o0 B(1,1)
AB: x=1, 0<y<l, dz=idy, |z|"=1+y
BC: y =1, xgoesfromlto0, dz=dx, |z|®=1+y* | 4
CO: x =0, ygoesfrom1to0, dz=idy, |z|*=y
1 1 0 0 0(0, 0) g A(L,0) >
2. _ [ .2 : 2 2 1R
Thus, §|Z|dz J.xdx+z-[ (1+y)dy+-[(1+x)dx+zjydy Fig. 2.4
c 0 0 1 !
=1+47i_é_i=_1+1
3 3 3 3

Example 2.6: Find an upper bound to the integral I= J.e—zdz, where Cis the straight line from (0, 1)
z
c

to (2, 0) in the complex plane.
Solution: The path Cis the line segment AB as shown in Fig. 2.5. Consider

i= |ex+iy| =|ex||eiy|_ e*
2

|x+iy|2 x2+y2_x2+y2

)| = -(2.3)

z

On C, ¢* is maximum at x = 2, so maximum value of ¢" is ¢°.
Next the minimum value of x>+ y* on Cis the square of OP, the perpendicular distance from O to

2
the line AB given by x +2y - 2=0. This s (2/V5) =4/5.

A
2
Thus from (2.3) we have, |f(z)| < 5%. Also L, the (g 14
P
90°
length |AB| =+/5. C
Using the ML-inequality, we have
4 2 O > X
B(2,0
[ <2 (J5) =20.65 9
x 4 Fig. 2.5

EXERCISE 2.1

1. Evaluate J. z%dz, where Cis the curve given by
c
{21‘, 0<t<1

@20 =124i¢-1), 1<t<2
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Simply connected domain. A simply connected domain D in the complex plane is a domain such that
every simple closed path in D encloses only points of D. A domain that is not simply connected is
called multiply connected. For example, interior of an ellipse, or of a circle are examples of simply
connected domains while interior of an annulus, for example 1 < |z| < 2, is boubly connected
domain. Figures 2.7(a), 2.7(b) and 2.7(c) represent respectively simply, doubly and triply connected
domains.

(@) (b) (©
Fig.2.7

Now we are in a position to state the Cauchy’s integral theorem.

Theorem 2.1: (Cauchy’s Integral Theorem) If f(z) is analytic and f'(z) is continuous in a simply
connected domain D, then for every piecewise smooth closed curve C in D the contour integral

§ fapiz=0 .24
c
Proof. Writing f(z) = u + iv and dz = dx + idy, we have

§3 f2)dz= §3 (u + iv)(dx + idy)
C

c
- j (udx - vdy) + i j (vdx + udy) ..(25)
c c
. , du du dv Jv
Since f’(z) is continuous, therefore, — are also continuous in D, and hence in the
' ay n’ 8y

region enclosed by C. Thus Green’s theorem, refer to Section 6.4 (Vol. 1), is applicable to the right side
of (2.5) and hence it becomes

§f z——”(az jdxd +zﬂ(———jdd ..(26)

where Eis theregion bounded by the closed curve C, refer to Fig. 2.7(a).

Since f(z) is analytic, u and v satisfy the Cauchy-Riemann equations (1.28), and thus the
integrands of the two double integrals on the right side of (2.6) are identically zero and hence we
obtain (2.4).
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We must note that analyticity of f(z) is only sufficient but not a necessary condition for (2.4) to be true.

We can check very easily that § d—; =0, where Cis the unit circle, refer Example2.2fora=0and n =
z
C

-2, but this result does not follow from Cauchy’s theorem since f(z) = 1/z*is not analytic in | z| <1,
zero being the point of singularity.

. o ) dz .
On the other hand, simple connectedness of the domain is essential one. For example, §— = 2mi,
z
c

where Cis the unit circle lying in theannulus 1/2 < | z| <3/2, refer to Example 2.2. Here, f(z) =1/ zis
analytic in the given domain but this domain is not simply connected so Cauchy theorem is not
applicable.

Example 2.7: Evaluate the following integrals by applying Cauchy’s integral theorem, in case
applicable

(@) § cos z dz (b) § sec z dz (© § #dz (d) § zdz,
- - ~ z°-52+6 -
where C is the unit circle |z | =1.

Solution: (a) The integrand f(z) = cos z is analytic for all z and also f’(z) = sin z is continuous
everywhere, and hence on and inside C also. Thus by Cauchy’s theorem

&coszdz=0.
C

(b) The integrand f(z) =secz = isnotanalytic at the points z=+1/2,£3n/2,... butall these points

cosz
lie outside the unit circle |z | = 1. Hence f{z) is analytic and f(z) is continuous in and on C, and thus

§ seczdz=0.
C

1 1
22 -52+6 (2-2)(z-3)
which lie outside the unit circle |z | =1, and hence by Cauchy’s theorem

(c) The integrand f(z) =

is analytic everywhere except at z =2, 3, the points

z°—-bz+6
c

(d) The integrand f(z) = z is not analytic and hence the Cauchy’s theorem is not applicable. In fact,
about C: |z| =1, we have

2z 2
58 Zdz = j 19 jei® dp = ij 46 = 2ri.
C 0 0
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2.2.1 Independence of Path

In the preceding section, we have noted that a line integral of a function f(z) depends not merely on the
end points of the path but also the path itself, refer to Example 2.3. We say that an integral of f(z) is

&)

independent of path in a domain D, if for every z,, z, in D the value of J f(z)dz depends only on the end
1

points z; and z, and not on the choice of the path C joining z; to z,. An important consequence of

Cauchy’s theorem is to look for the situations when the line integral is independent of path in a
domain D. We have the following result:

Theorem 2.2: (Independence of path) Iff(z) isanalytic in a simply connected domain D, then J. flz)dz
c

is independent of the path for every piecewise smooth curve C lying entirely within D.

Proof. Let P(z;) and Q(z,) be any two points in D and let C; and C, be two arbitrary paths in D from P
to Q intersecting each other only at the end points P and Q, as shown in Fig. 2.8a. Consider the curve
C; same as C, but with reverse orientation as shown in Fig. 2.8b. We observe that C; U C; is a
piecewise smooth simple closed curve in D, and so according to Cauchy’s integral theorem

j f(z)dz = 0, which gives j f2)dz = -j f2)dz, or j f2)dz = j f@)dz.
c G c C,

C,uG,

The minus sign disappears in case we integrate in the reverse direction.
This proves the theorem.

In case the two paths have finitely many points in common as shown in Fig. 2.9, then the
independence of path can be proved by applying the argument to each loop separately.

Q
Q
S
G
G G G
R
P
(a) (b)
P
Fig.2.8 Fig.2.9

2.2.2 Deformation of Path

It is useful to consider path independence in terms of process of path deformation. We can visualize
deforming C; continuously into C,, refer to Fig. 2.10, keeping the end points P and Q fixed. If fis
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j A2)dz = j Az2)dz .27
c C,

This result can be extended to multiply connected regions also
as shown in Fig. 2.12. The result is as follow:

Theorem 2.4:  If f(z) is analytic on and between the region included in
the closed curves C, C;, C,, C;etc., then

j A2)dz = j f2)dz + j fz)dz + j A2)dz+ ... .28
C C C, G

Fig. 2.12

Example 2.8: Verify that the line integral I = J. 7°dz is the same in each of the following cases
c
(@) Cis the straight line OP joining the points O(0, 0) and P(1, 2).
(b) Cis the straight line from O(0, 0) to A(1, 0) and then from A(1, 0) to P(1, 2).
(c) Cis the parabolic path y = 2x°.

Solution: The three paths are shown in the Fig. 2.13. Ya P(,2)
(a) Equation of theline OPis y=2x,0<x<1.
Thus, 2% = (x +iy)* = (1 + 2i)*x* and dz = dx + idy = (1 + 2i)dx I
F 1
Therefore, I = j 2z = j (1 +20)° 32 dx = %(1 +2i) = -%(11 +2i)
c 0

(b) Along OA; y=0,0<x<1,z=x. Thus we have z* = (x + iy)* = x* and

_ 0(0,0) il A0 X
dz = dx.
Along AP; x=1,0<y <2, thuswehavez=1 +1iy, Z? = 1+ iy)2 and Fig. 2.13
dz = idy.

1 2 3
. . 1 @1+2)° 1 1 .

Therefore, I=| Pdx+i| Q+iy)dy=—+"—"——=-=(11+2i).

erefore -([x X 1-([( iy)“dy 3 3 3 3( i)

(c) Along the curve y = 2x*,0< x <1, we have, z = x + iy =x+ 2ix?, thus 2> = 1+ 21'x)2x2 and
dz = dx + 4ix dx = (1 + 4ix)dx

1
Therefore, 1= [ 2dz= j (1 + 2ix)%3 (1 + 4ix)dx =
C 0

(¢ - dx* + 4ix%)(1 + 4ix)dx

O ey

1
= [ 162~ 20 + i(83° - 1621 = _%(11 +2i)
0

Thus along all the three paths the value of the line integral is the same. In fact the integrand z* is
analytic in the entire complex plane, the value of the line integral I depends only on the end points.
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dz over any closed path enclosing the given point ‘a’.

Example 2.9: Evaluate §
z—a
r

Solution: Figure 2.14 shows a typical such path but it cannot be
parameterized, since we do not know the contour I specifically. Let Cbe

C
acircle of radius r with centre ‘a’. Since the function f(z) is analytic on and
between I" and C, thus by principle of deformation of path r
1 1
——dz=|—dz.
z-a z-a
r c
The contour C can be parametrized as z=a + re'®, 0< 6 <2, and thus Fig. 2.14

2n s 2n
1 1 -i0 )
——dz=|—dz= Je—.ire'9d6=ijd6=2ni.

zZ-a zZ-a r
r c 0 0

In general, we note that for any closed anticlockwise contour I"about a point ‘a’, we have

2mi n=-1

§(z _a)" dz= { N ..(29)

! n#-1
This result follows from the principle of deformation and Example 2.2.
dz
2%(z-2) (z - 4)
(3,-1),(3,1) and (- 1, 1) in the complex plane.

Solution: The curve Cis the rectangle ABCD as shown in Fig. 2.15. Expanding the integrand in the
partial fractions, we obtain

Example 2.10: Evaluatel= § , where Cis the rectangle joining the points (- 1, - 1),
C

=3 @+l§d_§_l§£ s Lz ..(210)
32J z 8Jz 8Jz-2 32Jz-4
c c c c
Y
A
3 1 1 1 i
= 2n)+ =(0)- = 2mi) + —(0)=- — D(-1,1) C@3,1)
32 P T g g Cm) 5 0= 4 ~
1 + 1 >
The first three integrals on the right side of (2.10) are >
evaluated by using (2.9), and the last integral is zero by A3 -1) Fia. 2.15 BG,-1)
ig. 2.

Cauchy’s integral theorem.

dz
z2(z +2)

Example 2.11: Evaluate the integral § , where C is
C

any rectangle containing the points z = 0 and z = -2 inside it.
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Solution: The integrand f{z) is analytic everywhere except at the points z = 0 and z = -2, both the
points lying inside the rectangle C. Draw circles C; and C, respectively enclosing the points z =0 and
= -2 as shown in Fig. 2.16. The function f{(z) is analytic on and between the curves C, C; and C, and

hence by the extension of Cauchy’s theorem we have

§ dz =§ dz +§ dz  _1 @_§ dz N @_§ dz .11)
z2(z +2) z(z+2) zZ(z+2) 2|J z z+2 z z+2
C G G, G G G G
By Cauchy’s theorem, § dz__ 0, J‘@ =0.
z+2 z v
G 2 N
& c
Also, dz =2 and J ‘iz2 =2mi, mz f \Cl 1 > x
C, z C, z wyw Ky

2.2.3 Fundamental Theorem of the Complex Integral Calculus

The fundamental theorem of the complex integral calculus is a result analogous to the fundamental
theorem of integral calculus. The theorem stated below is useful for evaluating the integrals for which

an antiderivative can be found simply by inspection.

Theorem 2.5 (Fundamental theorem of complex integral calculus): If f(z) is analytic in a simply

connected domain D and z, be any fixed point in D, then

Fz) = j F(2*)dz"

Z0

is analytic in D given by F(z) = f(z), and

j F(2*)dz" =F(z) - E(z,).

20

A function F(z) satisfying F (z) = f(z) is called an “indefinite integral” or ‘primitive’ of f.
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10.

@) 356—6dz;c:|z|=1 ®) (Z+Z%sz;c:|z|=1

2 .
<z 51z

cosh? 2z
© §#dz;c: 1z] =2
*. (z+3i)(z" +16)

N —e

Evaluate the following integrals using the extension of the Cauchy’s integral theorem to
multiply connected domains
2z-3 22° +2° +4
a) ¢ ————dz;C: |z| =8 ————dz; C: |z-2| =4
@ §zz—3z—18 2] ® §; 2t +47° | |
c c
©) § az SC|z| =4
< (z=-1(z=2)(z-23)
2
By evaluating § e“dz, C:. |z| = 1, show that J 050 cos(®@ + sin 6)d8 = 0 and
c 0

2n
j €% sin (8 + sin 6)d6 = 0.
0

Prove that J. (z%+2)dz = 8na(12n'a* + 20n%a* + 15) /15, where Cis the arc of the cycloid x = a(0

c
-sin 0), y = a(1 - cos 0) joining the points (0, 0) and (2na, 0).

Show that the integral J e dz, where C is the path joining the points z = 1 + 2mi and
c
z =3 +4miis independent of the path of integration. Evaluate it by taking a suitable path.

Use the fundamental theorem to evaluate the following integrals:
0 3i 1+2i

(@) J cos 3z dz (b) J ze® dz (© J z sin (2%)dz
i 0 0
1+mi L1, ;

d J (22 + cosh 22)dz © j o ® j 2 cosh?z dz

0 0
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2.3 CAUCHY’S INTEGRAL FORMULA. DERIVATIVES OF AN ANALYTIC
FUNCTION

Cauchy’s integral formula is an important consequence of Cauchy’s integral theorem. This gives a
representation of an analytic function f(z) at any interior point z; of a simply connected domain D as
a contour integral evaluated along the boundary of a simple closed curve C which lies inside D and
encloses the point z;. The result is of fundamental importance and is stated as follows.

Theorem 2.6 (Cauchy’s integral formula): Let f(z) be analytic in a simply connected domain D. Then for
any point z, in D and any simple closed path C in D that encloses z,

fe = L4 .212)

Zm z—2z
C 0

the integration being taken counter-clockwise.

Proof. Let C; be a circle with centre z; and radius r lying entirely within C. The function S is

Z— 2y
analytic on and within the closed curves C and C; as shown in Fig. 2.17, thus by the extension of
Cauchy’s integral theorem,

o f)[h_ [£(z0) + £(2) = FCo)] .
s Z—ZO & Z— 2y zZ— 2y
- f(zo)ff ZfZZ i (Z):f )
0o & Z—2z

1 1

Consider the first integral on the right side of (2.13). Put z - z, = r ¢®, we

have dz = ir ¢® 0, and hence

2n Fig. 2.17
$ dz = [ ido=2ni
Z -z
G
Next, if I denotes the second integral on the right hand side of (2.13), then
Il = § f(Z)_f(ZO)dZ S§ f( ) fZO) |dZ| § |f(Z) f(ZO)lle| (214)
pa zZ— ZO S, |

Since f{z) is continuous in D, (for it is analytic in D), thus for a given € >0, there exists anumber §
>0suchthat |f(z)-f(zy) | <€, wherever |z-z,| <d.

Choosing the radius r of the circle C; such that r < § and hence from (2.14), we have

1f() - fz
|usi =

)l |4z <§5|dz| = Sonr=2ne
- Zo| r r
0 3
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Since € > 0 can be chosen arbitrary small, thus |I| can be made arbitrary small tending to zero,
and thus Eq. (2.13) becomes

FiO dz =2mif(z,), or flzy) = L Z) dz,
zZ— 2z 2mi
c c
which is (2.12).
2 +1
Example 2.13; Evaluate the integra1§'> o ds G 21 =
Z —

2 2
Solution: Writing the integrand as 22 t1_E D/ C
z° -1 z—-1
We observe that f(z) = (z* + 1)/ (z + 1) is analytic on and inside C, m
and here z; = 1, as shown in Fig. 2.18. Hence by Cauchy’s ©,0) (1’0) >
integral formula v
224

§3 L4 = 2mif(1) = 2mi
a |

Fig.2.18
2
Example 2.14: Evaluate the integra1§ ﬂdz, C|z| =
L oz(2z-1)
22 +1
Solution: Letl= § P E—
z(2z - 1)

The integrand (z +1)/z(2z - 1) isnot analytic at the point z = 0 and z =1/2 both of which lie inside
C. Writing it as

ZZ+1 1 1
22z-1) @ 1)[(2 ~12) Z}

22 +1 22 +1 - 5mi . T
Theref I= dz - dz =2 +1], .., -2 +1]..g =— -2mi=—,
erefore, § “12 § 2z =2mi [2% li=1, - 2mi [z 1.=0 > >
using the Cauchy s integral formula.
Example 2.15: Evaluate the integral § L, where the points z, and z, lie inside the
(z2-20) (z-21)

simple closed curve C and integration is taken in counter-clockwise sense.

Solution: Let Cyjand C; be two small simple closed non-intersecting curves surrounding z, and z;
respectively and lying entirely within C. Then by the extension of the Cauchy’s integral theorem, we
have
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fO20) = - §Ldz, n=12,.., ...(216)

(Z _ Zo)n+1

where Cis any simple closed path in D taken in counter-clockwise sense.
Proof. The Cauchy’s integral formula is

fe) = - §L@ 4

2niJd z -z,
C

Differentiating it under the integral sign w.r.t. z, we obtain

, 1
fla) =5~ _f@ 5dz ...(217)
miel(z - z9)°
Similarly, f7(zp) = 22—7:1 f(2) ————dz and, in general,
C (z- Zo)
() = —
21 § O n+1
¢

This completes the proof.

Example 2.17: Evaluate the integral § dz, C: | z| =1 taken in counter-clockwise sense.

Solution: Let I= e—dz. Here f(z) = ¢” is analytic in the region bounded by the simple closed curve
3 Yy &l Y p

c
|z| =1. The singular point z=0o0f 1/2 lies inside | z| =1. Hence, applying the generalized Cauchy’s
integral formula

= TU.

e omi d>
§—3 2= ()
C

+1
Example 2.18: Evaluate § (Z—)e)dz, C: |z-3| =2in the counter- clockwise sense.
L 2z-2)(z-4)
+1
Solution: Let I= § Z—)
z2(z-2)(z— 4)

The integrand has singularities at z =0, 2, and 4, out of these z =2 and 4 lie inside C.

Consider two non-intersecting closed contour C; and C,, as shown in Fig. 2.19, lying completely
within C, respectively about the point z = 2 and z = 4. Applying the principle of deformation the
integral I becomes
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1 AY
R QL S
L 2(z-2)(z-4)
C C
=§{ Z+13:| dz +§[ z+1 } d23=11+12,say. /‘1\/2‘\ N
c z2(z—4)” |z-2 : 2(z=2) [(z—4) 0 SR > X
+ ) +1 1
Now, I; = §{ z 13:| dz =2n1{ z 3:| =—%,using
o laz—4) Jz2=2 Hz=4)" 1, Fig. 2.19
Cauchy’s integral formula.
2 2 :
Similarly, I, = § z+1 dz__2mi d” | z+1 _ 23mi
z(z—2) (z—4) 21 42 2(z-2) | _ 64
G, z=4
Therefore, I = —3ni , 23mi =- E.
64 64
42" +2+5
Example 2.19: If F(a) = § ——~—— dz, where C: (x/2)*+ (y/3)* =1, taken in counter-clockwise
z—a
c
sense, then find F(3.5), F(i), F'(-1) and F”(-i). v
A
42
Solution: Wehave, F(3.5) =§> z +Z+5
L zZ- 3.5
. 42" +2+5 . .
The integrand — 35 is analytic everywhere except at the point

z = 3.5 which lies outside the ellipse (x/2)* + (y/3)* = 1, as shown in
Fig. 2.20. Therefore, it is analytic everywhere within C and hence by
Cauchy’s integral theorem F(3.5) = 0.

Next the numerator f(z) = 4z° + z + 5 of the integrand is analytic
everywherein Cand a =1, -1 and - all lie within C. Therefore by Cauchy’s

1 ¢ 42> +2z+5

integral theorem, f(a) = — ¢ ——————dz, which gives
2mi z—a
c
42" +z+5
§ ——— " dz =2nif(a) = 2mi[4a* + a + 5]
z—a

Hence F(a)= 2ni[4a® + a + 5], which implies
F(a) =2mi[8a + 1] and F”(a) = 16mi.
Thus, F(i) =2n(i + 1), F'(-1) = -14ni and F”(-i) = 16mi.
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6. If the function f(z) is analytic inside and on a simple closed curve C containing the point
z = a inside it, then show that

2n
J‘ e—in(—)f(a +¢%d6, n=0,1,2, ...
0

n!

fO@ ==

2.4 OBJECTIVE TYPE QUESTIONS
EXERCISE 2.4
Choose the correct answer or fill up the blanks in the following problems:

1. In case the path of integral C is a closed curve then the integration § f(z)dz is called the

c

2. If | f(z) | £Mevery where ona curve Cand /is the length of C, then J f(z)dz <........

c

. . . . . . . dz
3. If Cis acircle of radius r with center at a and oriented anticlockwise, then § —— =

) z-a
(@ 2n (b) 2mi (c) mi (d) none of these.
4. §ln zdz, when the curve |z | =1 1is oriented anticlockwise, is equal to
|z]=1
(@) 2mi (b) 2n () -2mi (d) -mi
5. Thedomain1<|z| <2is
(a) simply connected (b) doubly connected
(c) triply connected (d) none of these.
6. J. sinzdz=
|z|=1
(@) 2mi (b) 2n © 0 (d) none of these.

7. The contour integral § zdz cannot be evaluated using Cauchy’s theorem, since..............
|z]=1

8. Iff(z) is analytic in a simply connected domain D, then J f(2)dz is dependent on the path for
every piecewise smooth curve Clying entirely within D.
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3.

(@) mi

d) 1le™ - Hmi

4. -5127 (1 - 2i) cos (256)

Exercise 2.4

1.
4.

7.
10.
13.
16.
19.

Contour integral
a

z is analytic nowhere.
b

b

c

indefinite integral

®) i/m

€ -n@+i)

8.
11.

14.
17.
20.

o oo n n o o

(c) m/16

2 L
® (n—1)! s1n[(m -1) E}
3. b
6. c

9. sin zis analytic everywhere
12. d
15. derivatives of all orders
18. ¢





