
APPENDIX E

Special Functions

In this section, we collect some of the well-known properties of many of the
special functions considered in this text. Most are quoted here without detailed
proofs or derivations, while some have been discussed in a more physical context
throughout the book.

E.1 Trigonometric and Exponential Functions

Although they are presumably familiar to all students, we briefly discuss the
properties of the trigonometric and exponential functions. Since many of the
special functions found in mathematical physics arise as solutions to similar
differential equations, it is useful to recall here that:

• The differential equation

d2f (x)

dx2
= −k2f (x) (E.1)

has the (conventionally normalized) trig function solutions f (x) =
sin(kx), cos(kx), while

• The differential equation

d2f (x)

dx2
= +κ2f (x) (E.2)

has exponential solutions f (x) = eκx , e−κx .

The intuitive physical connections of these solutions with the oscillatory motion
of a particle near a potential energy minimum (case (E.1)) versus the “runaway”
(or damped) motion of a particle moved away from an unstable potential max-
imum (case (E.2)) can often be generalized to other differential equations to help
understand the physical origin of the behavior of the solutions.
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In each case above, as with any second-order ordinary differential equation,
we obtain two, linearly independent solutions, f1(x), f2(x). The most general
solution is then obtained by taking a linear combination a1f1(x) + a2f2(x) and
using the boundary conditions (in quantum mechanics) or initial conditions (in
classical mechanics) to determine the arbitrary coefficients.

E.2 Airy Functions

The Airy differential equation is written in the form

d2f (x)

dx2
= xf (x) (E.3)

Here we note the following:

• This problem is related to the quantum version of a particle moving under the
influence of a uniform force.

• It also appears in the context of matching WKB-type (Chapter 10) solu-
tions near classical turning points, where the potential energy function can
be approximated (locally) as a linear potential.

• Using Eqn. (E.2) as a model, for x > 0, we expect exponentially damped or
growing solutions; these should be consistent with the tunneling wavefunc-
tions of Section 8.2.2.

• For x < 0 we expect oscillatory solutions with the period of oscillation
decreasing for increasing |x| as the“effective wave number”grows like k2 ∼ |y|.

The two linearly independent solutions are labeled Ai(x) and Bi(x) and are
shown in Fig. E1. If we introduce the natural variable, ζ = 2x3/2/3, these
solutions can be expanded for large values of |x| as follows:

Ai(x) −→ 1

2

1√
π
√

x
e−ζ

[
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ζ
+ · · ·

]
(E.4)

Ai(−x) −→ 1√
π
√

x
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)
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ζ
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]
(E.5)

Bi(x) −→ 1√
π
√

x
eζ

[
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ζ
+ · · ·

]
(E.6)

Bi(−x) −→ 1√
π
√

x

[
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(
ζ + π

4

)
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ζ + π

4

) c1

ζ
+ · · ·

]
(E.7)

where c1 = 5/72.
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Figure E.1. Linearly independent solutions, Ai(z) and Bi(z), of the Airy differential equation.

E.3 Hermite Polynomials

The differential equation

d2hn(z)

dz2
− 2z

dhn(z)

dz
+ 2nhn(z) = 0 (E.8)

is called Hermite’s equation and has the solutions given by Rodriges’ formula

hn(z) = (−1)nez2 dn

dzn

(
e−z2

)
(E.9)

which are polynomials of degree n. The solutions are defined over the interval
(−∞,+∞) and satisfy the normalization condition

∫ +∞

−∞
[hn(z)]

2 e−z2
dz = 2nn!√π (E.10)

The first few Hermite polynomials are given by

h0(z) = 1 h1(z) = 2z h2(z) = 4z2 − 2 h3(z) = 8z3 − 12z
(E.11)
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E.4 Cylindrical Bessel Functions

The free-particle Schrödinger and wave equation in two dimensions (three
dimensions), when written in polar (cylindrical) coordinates, leads to the
equation

d2Rm(z)

dz2
+ 1

z

dRm(z)

dz
+

(
1 − m2

z2

)
Rm(z) = 0 (E.12)

where we consider integral values of m. The solutions are generically called
cylindrical Bessel functions, and for each |m|, the two linearly independent solu-
tions are labeled J|m|(z) (Bessel functions of the first kind) or Y|m|(z) (Neumann
functions or Bessel functions of the second kind). Their limiting behavior and
properties are discussed and displayed graphically in Section 15.3.1.

E.5 Spherical Bessel Functions

The free-particle Schrödinger equation in three-dimensions written in spherical
coordinates yields another version of Bessel’s equation, namely

d2Rl(z)

dz2
+ 2

z

dRl(z)

dz
+

(
1 − l(l + 1)

z2

)
Rl(z) = 0 (E.13)

with l an integer. Its solutions are the spherical Bessel functions, jl(z) and nl(z),
which can be written in a standard form, in terms of the cylindrical Bessel
functions

jl(z) =
√
π

2z
Jl+1/2(z) and nl(z) =

√
π

2z
Yl+1/2(z) (E.14)

and are discussed in Section 16.6.

E.6 Legendre Polynomials

The (associated) Legendre’s differential equation is written in the form

(1 − z2)
d2�l ,m(z)

dz2
− 2z

d�l ,m(z)

dz
+

(
l(l + 1)− m2

(1 − z2)

)
�l ,m(z) = 0

(E.15)
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The solutions are the associated Legendre polynomials given by

Pm
l (z) = (−1)m (1 − z2)m/2

2l l!
(

d

dz

)l+m (
z2 − 1

)l
(E.16)

for m > 0 and extended to negative m via

P−m
l (z) = (−1)m (l − m)!

(l + m)! Pm
l (z) (E.17)

They are defined over the interval (−1, 1) and the normalization is such that∫ +1

−1
dz Pm

l (z) Pm
l ′ (z) =

∫ π

0
sin(θ) dθ Pm

l (cos(θ)) Pm
l ′ (cos(θ))

= 2

2l + 1

(l + m)!
(l − m)! δl ,l ′ (E.18)

The special case of m = 0 gives the Legendre polynomials which are defined via

Pl(z) ≡ Pm=0
l (z) (E.19)

which satisfy the differential equation

(1 − z2)
d2Pl(z)

dz2
− 2z

dPl(z)

dz
+ l(l + 1) Pl(z) = 0 (E.20)

E.7 Generalized Laguerre Polynomials

The differential equation

d2G(z)

dz2
+

(
α − 1

z
+ 1

)
dG(z)

dz
+ nG(z) = 0 (E.21)

is called Laguerre’s equation and has polynomial solutions labeled as

G(z) = L(α)n (z) (E.22)

which can be generated using Rodrigues’ formula

L(α)n (z) = ez

n! zα

(
d

dz

)n [
zn+αe−z ]

(E.23)

The solutions are defined over the interval (0,+∞) and satisfy the normalization
condition ∫ +∞

0
dz zαe−z

[
L(α)n (z)

]2 = �(n + α + 1)

n! (E.24)
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E.8 The Dirac δ-Function

The Dirac δ-function was introduced and discussed extensively in Section 2.4
and here we only list some additional properties and identities. We recall that

∫ b

a
dx f (x) δ(x − c) =

{
f (c) if a < c < b

0 otherwise
(E.25)

that is, the value of f (x= c) is picked out from the integrand, or not, depending
on whether the singularity is contained in the region of integration, or not. One
can also derive (or justify) the following results.

δ(ax) = 1

|a| δ(x) (E.26)

δ(x2 − a2) = δ[(x − a)(x + a)]
= 1

|x + a|δ(x − a)+ 1

|x − a|δ(x + a)

δ(x2 − a2) = 1

2|a| (δ(x − a)+ δ(x + a)) (E.27)

which is a special case of the more general relation

δ[f (x)] =
∑

i

δ(x − xi)

|df /dx|x=xi

(E.28)

where the sum is over all possible roots of f (xi) = 0. Finally, recall that the step-
or Heaviside-function is defined via

�(x − a) =
{

0 for x < a
1 for x > a

(E.29)

and is given by

�′(x − a) = δ(x − a) (E.30)

One can show that δ(x) can be obtained by taking the limit of the family of
functions

δε(x) = ε

π

sin2(x/ε)

x2
as ε → 0 (E.31)
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E.9 The Euler Gamma Function

Using integration by parts techniques, it is easy to derive Eqn. (D.34), namely∫ ∞

0
dx xn e−x = n(n − 1)(n − 2) · · · 3 · 2 · 1 ≡ n! (E.32)

where n! is read as “n-factorial.” The integral can be generalized to noninteger
values of n, and the Gamma function is defined in this way via∫ ∞

0
dx xn−1 e−x ≡ �(n) for n �= 0,−1,−2,−3, . . . (E.33)

For positive integers, it reduces to the factorial function

�(n) = (n − 1)! for integral n > 0 (E.34)

and also satisfies

�(n + 1) = n�(n) (E.35)

�(n)�(1 − n) = π

sin(nπ)
(E.36)

Other special values are

�

(
1

2

)
= 2

∫ ∞

0
e−t 2

dt = √
π (E.37)

which can be evaluated since this is now a Gaussian integral. This can be
combined with Eqn. (E.36) (for nonnegative integral n) to give

�

(
n + 1

2

)
= 1 · 3 · 5 · · · (2n − 1)

2n
= (2n − 1)!!

2n

√
π (E.38)

which implicitly defines the double-factorial function. Finally, we note that Stirl-
ing’s formula can be used to estimate the value of the factorial function for large
argument, namely

�(n + 1) = n! ∼ √
2πn

(n

e

)n
(

1 + 1

12n
+ 1

288n2
+ · · ·

)
(E.39)

E.10 Problems

PE.1. Show that the solutions to the Airy differential equation can be written in terms
of cylindrical Bessel functions (satisfying Eqn. (E.12) of fractional (n = ±1/3)
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order. For example, a standard result is that

Ai(−x) = 1

3

√
x

[
J1/3(y)+ J−1/3(y)

]
(E.40)

where y = 2x3/2/3.

PE.2. Estimate the value of 20! using Stirling’s formula and compare to the exact value.




