
APPENDIX D

Integrals, Summations, and
Calculus Results

D.1 Integrals

In this section we collect many of the nontrivial indefinite and definite integrals
which may be needed for most of the derivations or exercises in the text. Some
of them are evaluated using sophisticated methods (such as contour integra-
tion, discussed briefly in Section D.4), but we are only interested in using this
collection as a reference. The reader is urged to consult other mathematical
handbooks or especially to make use of symbolic manipulation programs such
as Mathematica� or Maple�.

We begin by recalling that the simple rule for the differentiation of product
functions

d

dx
[f (x) g (x))] = df (x)

dx
g (x)+ f (x)

dg (x)

dx
(D.1)

is the basis for the integration by parts (or IBP) method which we use frequently,
namely ∫ b

a
dx

df (x)

dx
g (x) = −

∫ b

a
dxf (x)

dg (x)

dx
+ [

f (x) g (x)
]b

a (D.2)

Some standard indefinite integrals:∫
dx

x2 + a2
= 1

a
tan−1

(x

a

)
(D.3)∫

dx

a2 − x2
= 1

2a
log

(
a + x

a − x

)
(a2 > x2) (D.4)

∫
(sin(ax)) (sin(bx)) dx = sin(a − b)x

2(a − b)
− sin(a + b)x

2(a + b)
(a2 �= b2) (D.5)∫

(cos(ax)) (cos(bx)) dx = sin(a − b)x

2(a − b)
+ sin(a + b)x

2(a + b)
(a2 �= b2) (D.6)
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(sin(ax)) (cos(bx)) dx = −cos(a − b)x

2(a − b)
− cos(a + b)x

2(a + b)
(a2 �= b2)

(D.7)∫
dx x sin(ax) = 1

a2
sin(ax)− x

a
cos(ax) (D.8)∫

dx x cos(ax) = 1

a2
cos(ax)+ x

a
cos(ax) (D.9)

∫
dx x2 sin(ax) = 2x

a2
sin(ax)− (a2x2 − 2)

a3
cos(ax) (D.10)

∫
dx x2 cos(ax) = 2x

a2
cos(ax)+ (a2x2 − 2)

a3
sin(ax) (D.11)

∫
dx x4 sin(ax) = 4x(a2x2 − 6)

a4
sin(ax)

− (a4x4 − 12a2x2 + 24)

a5
cos(ax) (D.12)∫

dx x4 cos(ax) = 4x(a2x2 − 6)

a4
cos(ax)

+ (a4x4 − 12a2x2 + 24)

a5
sin(ax) (D.13)∫

dx x sin2(ax) = x2

4
− x sin(2ax)

4a
− cos(2ax)

8a2
(D.14)

∫
dx x cos2(ax) = x2

4
+ x sin(2ax)

4a
+ cos(2ax)

8a2
(D.15)

∫
dx x2 sin2(ax) = x3

6
−

(
x2

4a
− 1

8a3

)
sin(2ax)− x cos(2ax)

4a2

(D.16)∫
dx x2 cos2(ax) = x3

6
+

(
x2

4a
− 1

8a3

)
sin(2ax)+ x cos(2ax)

4a2

(D.17)

∫
eax dx = 1

a
eax (D.18)∫

x eax dx = 1

a2
(ax − 1)eax (D.19)∫

x2 eax dx = 1

a3
(a2x2 − 2ax + 2)eax (D.20)
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Some definite integrals: ∫ +∞

−∞
sin(x)

x
dx = π (D.21)

∫ +∞

−∞
sin2(x)

x2
dx = π (D.22)

∫ +∞

−∞
sin4(x)

x2
dx = π

2
(D.23)

∫ +∞

−∞
(1 − cos(x))

x2
dx = π (D.24)

∫ +∞

−∞
(1 − cos(x))2

x2
dx = π (D.25)

∫ +∞

−∞
sin(x) cos(x)

x
dx = π

2
(D.26)

∫ +∞

−∞
sin(x) cos(mx)

x
dx =




0 for |m| > 1
π/2 for |m| = 1
π for |m| < 1

(D.27)

∫ +∞

−∞
sin(x1 − x) sin(x2 − x)

(x − x1)(x − x2)
dx = π

sin(x1 − x2)

(x1 − x2)
(D.28)

∫ ∞

0

cos(mx)

x2 + a2
dx = π

2|a|e
−|ma| (D.29)

∫ ∞

0

cos(mx) cos(nx)

x2 + a2
dx = π

a

(
e−|(m−n)a| + e−|(m+n)a|) (D.30)

∫ ∞

0

sin(mx) sin(nx)

x2 + a2
dx = π

a

(
e−|(m−n)a| − e−|(m+n)a|) (D.31)

∫ ∞

0
cos(mx) e−ax dx = a

a2 + m2
(a > 0) (D.32)

∫ ∞

0
sin(mx) e−ax dx = m

a2 + m2
(a > 0) (D.33)

The following integrals make use of the Euler Gamma function (�(z)), the
generalized factorial function, as discussed in Appendix C.9.∫ ∞

0
xn e−x dx = n! = �(n + 1) (D.34)
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0
dx xn e−(ax)m = 1

man+1
�

(
n + 1

m

)
(D.35)

∫ 1

0

xm dx√
1 − xn

= �(1/2)�((m + 1)/n)

n�(1/2 + (m + 1)/n)
(D.36)

∫ 1

0
xm−1 (1 − x)n−1 dx = �(n)�(n)

�(m + n)
(D.37)

∫ ∞

0

xa dx

(m + xb)c
= m(a+1−bc)/b

b

[
�((a + 1)/b)) �(c − (a + 1)/b)

�(c)

]
(D.38)

Integrals containing Gaussian terms of the form exp(−ax2) are of special import-
ance and we discuss their evaluation in slightly more detail. The standard trick
for the evaluation of the basic integral

I ≡
∫ +∞

−∞
dx exp(−x2) = √

π (D.39)

is to consider

I 2 = I · I =
(∫ +∞

−∞
dx exp(−x2)

)
·
(∫ +∞

−∞
dy exp(−y2)

)

=
∫ +∞

−∞

∫ +∞

−∞
dx dy exp(−x2 − y2)

=
∫ ∞

0

∫ 2π

0
r dr dθ exp(−r2)

= 2π

∫ ∞

0
dr r exp(−r2)

I 2 = π (D.40)

so that I = √
π . The more general basic integral is

I (a) =
∫ +∞

−∞
dx exp(−ax2) =

√
π

a
(D.41)

and a related one is

I (a, b) ≡
∫ +∞

−∞
dx exp(−ax2 − bx)

=
∫ +∞

−∞
dx exp(−a(x2 + bx/a + b2/4a2 − b2/4a)

= exp(b2/4a)

∫ +∞

−∞
dx exp(−a(x + b/a)2)
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I (a, b) = exp(b2/4a)

√
π

a
(D.42)

where we have used a standard method of completing the square and shifting
variables. One can generalize these expressions further by “differentiating under
the integral sign” to obtain

J (a, b; n) =
∫ +∞

−∞
dx xn exp(−ax2 − bx)

=
(
− ∂

∂b

)n

I (a, b) =
(
− ∂

∂b

)n [
exp(b2/4a)

√
π

a

]
(D.43)

For example, one has

J (a, b; 1) ≡
∫ +∞

−∞
x exp(−ax2 + bx) dx =

(
b

2a

)
exp(b2/4a)

√
π

a
(D.44)

J (a, b; 2) ≡
∫ +∞

−∞
x2 exp(−ax2 + bx) dx =

(
b2 + 2a

4a2

)
exp(b2/4a)

√
π

a
(D.45)

and so forth. For even values of n = 2k we can also evaluate J (a, b; n = 2k) by
using

J (a, b; 2k) =
∫ +∞

−∞
x2k e−ax2−bx dx =

(
− ∂

∂a

)k

I (a, b) (D.46)

Integrals involving cos(kx) and sin(kx) terms and Gaussian integrands can also
be done by using identities such as cos(kx) = [exp(+ikx) + exp(−ikx)]/2 to
obtain∫ +∞

−∞
e−ax2−bx cos(kx) dx = +

√
π

a
e(b

2−k2)/4a cos(kb/2a) (D.47)

∫ +∞

−∞
e−ax2−bx sin(kx) dx = −

√
π

a
e((b

2−k2)/4a sin(kb/2a) (D.48)

Integrals containing ax2 + bx + c arise in the study of the classical limit of the
hydrogen atom and elsewhere. If we define X = ax2 + bx + c and q = 4ac − b2,
one has ∫

dx√
X
= − 1√−a

sin−1
(

2ax + b√−q

)
(a < 0) (D.49)

∫
x dx√

X
=
√

X

a
− b

2a

∫
dx√

X
(D.50)
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∫
x2 dx√

X
=

(
x

2a
− 3b

4a2

)√
X + 3b2 − 4ac

8a2

∫
dx√

X
(D.51)

∫
x3 dx√

X
=

(
x2

3a
− 5bx

12a2
+ 5b2

8a3
− 2c

3a2

)√
X +

(
3bc

4a2
− 5b3

16a3

) ∫
dx√

X
(D.52)∫

dx

x
√

X
= 1√−c

sin−1
(

bx + 2c

|x|√−q

)
(c < 0) (D.53)

D.2 Summations and Series Expansions

We collect here some useful results which evaluate the summations of certain
finite and infinite series.

k=N∑
k=1

xk = 1 − xN+1

1 − x
(D.54)

k=N∑
k=1

k = N (N + 1)

2
(D.55)

k=N∑
k=1

k2 = N (N + 1)(2N + 1)

6
(D.56)

The Riemann zeta function is defined via

ζ(s) = 1 + 1

2s
+ 1

3s
+ · · · =

∞∑
n=1

1

ns
(D.57)

Some special cases are

ζ(2) = π2

6
ζ(4) = π4

90
ζ(6) = π6

945
ζ(8) = π8

9450
(D.58)

One can also show that

ζodd(s) ≡ 1

1
+ 1

3s
+ 1

5s
+ · · · =

∞∑
n=1

1

(2n − 1)s
=

(
1 − 1

2s

)
ζ(s) (D.59)

so that

ζodd(2) = π2

8
and ζodd(4) = π4

96
(D.60)
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One also has:

S(x) =
∞∑

k=1

1

((2k − 1)2 − x2)
= π

2x
tan

(πx

2

)
(D.61)

T (x) =
∞∑

k=1

1

((2k − 1)2 − x2)2
= π

16x3

[
πxsec2

(πx

2

)
− 2 tan

(πx

2

)]
(D.62)

The Taylor series expansion of a (well-behaved) function f (x) about the point
x = a is given by

f (x) = f (a)+ f ′(a)(x − a)+ 1

2! f
′′(a)(x − a)2 + · · ·

=
∞∑

n=0

f (n)(a)

n! (x − a)2 (D.63)

where

f (n)(a) = dnf (x)

dxm

∣∣∣∣
x=a

(D.64)

is the nth derivative of f (x) evaluated at z = a. Familiar examples include:

(1 ± x)n = 1 ± nx + n(n − 1)

2! x2 ± n(n − 1)(n − 2)

3! x3 + · · ·

=
∞∑

k=1

(±1)k n!
(n − k)!k!x

k for |x| < 1 (D.65)

√
1 ± x = 1 ± x

2
− x2

8
± x3

16
+ · · · for |x| < 1 (D.66)

ex = 1 + x + x2

2! +
x3

3! + · · · =
∞∑

k=0

xk

k! for all real x (D.67)

ln(1 + x) = x − x

2
+ x3

3
+ · · · =

∞∑
k=1

(−1)k xk

k
for − 1 < x ≤ +1 (D.68)

sin(x) = x − x3

3! +
x5

5! + · · · =
∞∑

k=1

(−1)k x2k−1

(2k − 1)! for all real x (D.69)

cos(x) = 1 − x2

2! +
x4

4! + · · · =
∞∑

k=0

(−1)k x2k

(2k)! for all real x (D.70)

tan(x) = x − x3

3! +
2x5

15
+ · · · for |x| < π/2 (D.71)
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A useful tool to investigate the convergence of a series expansion is the ratio test.
If an infinite summation is defined via

S =
∞∑

n=0

ρn (D.72)

the limit of successive ratios is defined via

ρ = lim
n→∞

ρn+1

ρn
(D.73)

One then knows that

• The series converges (S is finite) if ρ < 1,

• The series diverges (S is infinite) if ρ > 1,

• The test is inconclusive (the series may either converge or diverge) if ρ = 1.

If the terms in the series (i) alternate in sign, (ii) decrease in magnitude (each
one smaller than the one before it), and the terms approach zero, then the series
is known to converge by Liebniz’s theorem.

It is often useful to recall the definition of the (one-dimensional) integral as
the “area under the curve.” The trapezoidal approximation to the area under
f (x) in the interval (a, b) is obtained by splitting the interval into N equal pieces
of size h = (b − a)/N which gives

∫ b

a
dx f (x) ≈ FN (a, b) ≡ h

(
1

2
f (a)+

N−1∑
n=1

f (a + nh)+ 1

2
f (b)

)
(D.74)

This expression can form the basis for the simplest of numerical integration
programs if necessary. The Euler–Maclaurin formula describes the difference
between these two approximations via

[∫ b

a
dx f (x)

]
− FN (a, b) = − B2

2! h2f ′(x)
∣∣∣∣
b

a
− B4

4! h4f ′′′(x)
∣∣∣∣
b

a
+ · · · (D.75)

where the Bn are the Bernoulli numbers the first few of which are

B0 = 1 B2 = 1

6
B4 = − 1

30
B6 = 1

42
(D.76)
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D.3 Assorted Calculus Results

The gradient-squared operator or Laplacian operator in rectangular (Cartesian),
cylindrical (polar), or spherical coordinates is given by

∇2f (x , y , z) = ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2
(D.77)

∇2f (r , θ , z) = 1

r

∂

∂r

(
r
∂f

∂r

)
+ 1

r2

∂2f

∂θ2
+ ∂2f

∂z2
(D.78)

∇2f (r , θ ,φ) = 1

r2

∂

∂r

(
r2 ∂f

∂r

)
+ 1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂f

∂θ

)

+ 1

r2 sin2(θ)

∂2f

∂φ2
(D.79)

If one changes variables in a multidimensional integral, one must also apply
the appropriate transformation in the “infinitesimal measure” as well. For
example, if one changes variables via

x , y =⇒ u(x , y), v(x , y) (D.80)

then one has the relation

du dv = J (w , v ; x , y) dx dy = det

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
dx dy (D.81)

with similar extensions to more dimensions; the function J (u, v ; x , y) is called
the Jacobian of the transformation. You should be able to use this approach to
derive the familiar result that dx dy dz = dr = r2 dr sin(θ) dθ dφ.

D.4 Real Integrals by Contour Integration

Large numbers of useful real integrals, especially ones involving integration over
the entire real line, can be done using simple contour integration techniques,
making use of complex variables. We very briefly review the rudimentary com-
plex analysis and “tricks of the trade” needed to implement many such integrals,
leaving detailed discussions to undergraduate texts on mathematical methods.

The basic result from complex analysis which is required is the residue theorem
which simplifies the evaluation of integrals of complex functions about a closed
curve C in the complex plane, using only knowledge of the structure of the poles
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(and essential singularities) that are enclosed by C . The appropriate connection
is given by ∮

C
f (z) dz = 2π i

∑
i

Ri (D.82)

where for a function f (z) which has a pole of order n at z = z0, the residue, Ri ,
is given by

Ri = 1

(n − 1)!

{(
d

dz

)n−1 [
(z − z0)

nf (z)
]}

z→z0

(D.83)

The closed contour C is assumed to have a counterclockwise orientation, while
if it is completed in a clockwise direction, an overall minus sign is added to the
right-hand side of Eqn. (D.82). A judicious choice of an appropriate contour is
often all that is needed to use the residue theorem to aid in the evaluation of
integrals along the real-axis, and we present two exemplary cases.

Simple poles: Consider the real integral

I1 =
∫ +∞

−∞
dx

(1 + x2)3
(D.84)

which is clearly square-integrable and convergent. Generalize this to the complex
line integral given by

I1 =
∮

C

dz

(1 + z2)3
(D.85)

over the contour shown in Fig. C.2(a), considering the limit that R → ∞ so
that the semicircle C1 eventually extends to infinity, while the part of C along
the real line reproduces I1. For those values on the semicircle C1, we can write
the complex variable z in the form

z = Reiθ so that dz = iReiθ dθ giving
dz

(1 + z2)3
→ ie−5iθ

R5
(D.86)

which becomes arbitrarily small as R →∞.
On the one hand, the complex integral over C is the sum of the desired real

integral and that over the semicircular curve C1 in the form

I1 =
∫ +R

−R

dx

(1 + x2)3
+

∫
C1 (R→∞)

dz

(1 + z2)2
−→ I1 (D.87)

in the limit that R → ∞, since the contribution from C1 vanishes. We can,
however, also evaluate I1 using the residue theorem with f (z) = 1/(1 + z2)3,
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–R –R

C1

C2

D1

C1

–e +e+R +R

z0 = +i(a) (b)

Figure D.1. Contours used in the evaluation of real integrals.

which has simple poles of order 3 at z0 = ±i. Using the contour C (semicircle
C1 plus real line) in Fig. D.1(a), which encloses the pole at z0 = +i, we find

I1 = I1 = 2π i
1

2!

{(
d

dz

)2 [
(z − i)3 1

(z − i)3(z + i)3

]}
z→+i

= π i

(
(−3)(−4)

(2i)5

)
= 3π

8
(D.88)

If we consider the related contour consisting of the semicircle C2 (dashed con-
tour) and the real line (enclosing the pole at z0 = −i), we obtain the same result
(recall the additional minus sign if the contour orientation is clockwise.)

Deformed contours: Consider the integral

I2 =
∫ +∞

−∞
sin(x)

x
dx (D.89)

which despite appearances is everywhere finite and convergent. The integrand
is well behaved at x = 0 (since limx→0 sin(x)/x = 1) and while the large |x|
dependence of 1/x would yield a logarithmic divergence by itself, the alternation
of signs due to the oscillatory sin(x) gives convergence; think of the integral
as an infinite sum of terms (the positive and negative areas defining the area
under the integrand) with alternating signs, and of decreasing magnitude, which
guarantees so-called conditional convergence.

In this case we choose to write I2 in terms of the imaginary part (Im) of an
already complex integral in the form

I2 = Im

[∫ +∞

−∞
eix

x
dx

]
≡ Im[Ĩ ] (D.90)

and use contour integration over the deformed semicircle shown in Fig. C.2(b),
where the region near z = 0 is treated more carefully, with a smaller semicircle
of radius ε. The contour integral over C1, D1 and the integrals over the ranges
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(−R,−ε) and (+ε,+R) constitute the desired contour C , but since it encloses
no poles we have

I2 ≡
∫

C

eiz

z
dz = 2π i

∑
i

Ri = 0 (D.91)

via the residue theorem. The integral I2 can also be split up into the four
contributions

I2 =
[∫ −ε

−R
+

∫ +R

+ε
eix

x
dx

]
+

∫
C1

eiz

z
dz +

∫
D1

eiz

z
dz (D.92)

eventually taking the twin limits ε → 0 and R →∞. The first two terms give Ĩ in
this limit,while for C1 we use the same parameterization as in Eqn. (D.86) and it is
easy to show that the contribution is exponentially suppressed as exp(−R sin(θ))
as R →∞. Finally, for the contribution around D1, we use z = ε exp(iθ) which
gives ∫

D1

eiz

z
dz =

∫ 0

π

eiεeiθ

εeiθ

(
iεeiθdθ

)
−→ i

∫ 0

π

dθ = −iπ (D.93)

as ε→ 0. From Eqns (D.91) and (D.92) we then find that 0 = I2 = Ĩ + 0 − iπ
so that ∫ +∞

−∞
eix

x
dx = Ĩ = iπ and I2 = Im[Ĩ ] = Im[iπ ] = π (D.94)

A large number of other similar integrals can be done using the deformed contour
shown in Fig. C.2(b). For example, you should be able to show that∫ +∞

−∞
[1 − cos(y)]

y2
dy = π (D.95)

by taking the real part of a related integral, and extending it to the contour used
above.

D.5 Plotting

The functional relationship between two variables is often best exemplified or
analyzed (or even discovered in the first place) by plotting the “data” in an
appropriate manner. In this section,we briefly recall some of the basics of plotting
techniques; because linear relations are easiest to visualize, many standard tricks
rely on graphing data in such a way as to yield a straight line.
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For variables which are connected by an exponential relation one has

exponential: y = aebx =⇒ ln(y) = ln(a)+ bx (D.96)

which suggests that one plot ln(y) versus x ; this gives a so-called semilog plot.
A straight-line fit on such a plot implies an exponential relation, and the
“generalized slope” is given by

b = (ln(y2)− ln(y1))

(x2 − x1)
= ln(y2/y1)

(x2 − x1)
(D.97)

The value of a (or ln(a)) plays the role of an “intercept” and can be extracted
from any point on the line once b is known; if the point with x = 0 is included,
then y(0) = a is the most obvious choice.

For power-law relations of the form

power-law: y = cxd =⇒ ln(y) = ln(c)+ d ln(x) (D.98)

it is best to graph ln(y) versus ln(x) giving a log–log plot where the “generalized
slope” is now

d = (ln(y2)− ln(y1))

(ln(x2)− ln(x1))
= ln(y2/y1)

ln(x2/x1)
(D.99)

D.6 Problems

PD.1. Derive any of the integrals in Eqns (D.5)–(D.7) by using complex exponentials.

PD.2. Derive any of the integrals in Eqns (D.8)–(D.11) using IBP techniques.

PD.3. Derive the integral in Eqn. (D.8) by differentiating both sides of the relation∫
cos(ax) dx = 1

a
sin(ax) (D.100)

with respect to a.

PD.4. Evaluate J (a, b; n) in Eqn. (D.43) for n = 2, 4 by differentiating with respect to b.
Then evaluate those two cases using Eqn. (D.46) by differentiating with respect
to a and confirm you get the same answers.

PD.5. Derive Eqn. (D.59).

PD.6. Evaluate the integral in Eqn. (D.24) using contour integration.

PD.7. At very low temperatures, the heat capacity (at constant volume) of metals is
expected to given by an expression of the form

CV = γT + AT 3 (D.101)

Given experimental values for T and CV (T ), what would be the best way to plot
the data to confirm such a relation and to most easily extract γ and A?




