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Many-body spectral statistics of relativistic quantum billiard systems
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In the field of quantum chaos, spectral statistics is one of the most extensively investigated characteristics.
Despite a large body of existing literature, the effects of many-body interactions on the spectral statistics of
relativistic quantum systems remain poorly understood. Treating electron-electron interactions through the one-
orbital mean-field Hubbard model, we address this fundamental issue using graphene billiards with the geometric
shape of a circular sector as prototypical systems. Our approach is to consider the two characteristically different
cases where the statistics are Poisson and Gaussian orthogonal ensemble (GOE) so the corresponding classical
dynamics are typically integrable and chaotic, respectively, and to systematically investigate how the statistics
change as the Hubbard interaction strength increases from zero. We find that, for energies near the Dirac point,
the Hubbard interactions have a significant effect on the spectral statistics. Regardless of the type of spectral
statistics to begin with, increasing the Hubbard interaction strength up to a critical value causes the statistics
to approach GOE, rendering more applicable the random matrix theory. As the interaction strength increases
beyond the critical value, the statistics evolve toward Poisson, due to the emergence of an energy gap rendering
the quasiparticles massive. We also find that the energy levels above and below the Dirac point can exhibit
different statistics, and the many-body interactions have little effect on the statistics for levels far from the Dirac
point. These results reveal the intriguing interplay between many-body interactions and the spectral statistics,
which we develop a physical picture to understand.
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I. INTRODUCTION

Quantum chaos is the interdisciplinary field investigat-
ing the quantum manifestations or signatures of chaos
that arise in the classical limit [1–3]. In real-world quan-
tum systems, many-body interactions are ubiquitous, and
their effects on measurable quantities need to be identi-
fied and understood. In quantum chaos, the vast majority
of studies in the existing literature was carried out in the
single-particle framework without considering many-body
interactions. Nonetheless, there have been works on the ef-
fects of many-body interactions on the energy level spacing
statistics in nonrelativistic quantum systems described by the
Schrödinger equation [4–14]. Many-body interactions have
also been studied in quantum thermalization [15,16] using
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the spin-chain models [17], and there were sporadic works on
the many-body effects through a mean-field potential in quan-
tum billiard systems [10,18] where the classical orbits play a
nontrivial role in the spectral statistics. Despite these works,
the effects of many-body interactions on basic quantities in
the field of relativistic quantum chaos [19–22] have remained
poorly understood, which represents a knowledge gap in basic
physics. This problem also has practical implications. Starting
from the separation of graphene two decades ago [23–27], the
important role of relativistic quantum mechanics in solid-state
systems has been recognized, as the low-energy excitations in
graphene and a plethora of other two-dimensional (2D) Dirac
materials are governed by the 2D Dirac equation. Understand-
ing the interplay among many-body interactions, relativistic
quantum mechanics, and classical dynamics thus has both
basic and applied values.

In the single-particle framework in which the many-body
interactions are completely ignored, the universal behaviors
of the spectral statistics of nonrelativistic quantum systems
with respect to the generic classical dynamics have been well
documented and understood. For fully chaotic systems with
time-reversal symmetry in the classical limit, the level spacing
statistics are equivalent to those of random matrices from the
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Gaussian orthogonal ensemble (GOE) [28–30]. For classically
integrable dynamics, the spectral statistics are Poisson [31],
due to the independence of quantum numbers associated with
different degrees of freedom and the consequent loss of any
correlation between adjacent energy levels. Previous works
also revealed that the correspondences between the nature of
the classical dynamics and the GOE or Poisson statistics hold
for relativistic quantum systems [19,32–37]. However, excep-
tions to the correspondences were recently uncovered where,
for circular sector billiards filled with graphene, the spectra
of energy levels close to the Dirac point follow GOE [38],
despite the classically dynamics being integrable. This is sur-
prising because the conventional wisdom from the studies
of nonrelativistic quantum billiards stipulates that the level
spacing statistics should be Poisson in this case. The physical
reason for the emergence of GOE statistics in circular sector
graphene billiard systems can be attributed to the complicated
boundary conditions of the spinor wave functions that break
the integrability of the corresponding classical dynamics [38].

In this work, we investigate the effects of electron-electron
interactions on the spectral properties of relativistic quantum
systems, using circular sector graphene billiards as a proto-
typical model. Our concrete technical approach is to consider
two distinct types of circular sectors whose spectral statistics
are Poisson and GOE, respectively, in the absence of many-
body interactions [38], and to systematically investigate if
and how characteristic changes in the statistics occur as the
electron-electron interaction strength increases from zero. To
accomplish this task, an essential requirement is to incor-
porate the many-body interactions into the graphene billiard
system. We use the Hubbard model [39], which was proposed
for understanding the transition between conducting and
insulating phases [40]. In the model, the electron-electron in-
teractions are approximated by a screened Coulomb potential,
which results in a conventional tight-binding model obeying
the Pauli exclusion principle [41,42]. Despite its introduction
more than half a century ago, the Hubbard model and its
extensions remain an active research area in condensed matter
physics due to its high relevance to frontier areas such as
heavy-fermion materials [43,44], high-temperature supercon-
ductors [45–47], and edge magnetism in graphene [48–52].
The Hubbard model represents a theoretical and computation
paradigm to gain physical insights into many-body interac-
tions in various physical systems.

Our work and the main contributions can be described
as follows. We calculate the full set of eigenenergies and
eigenstates for circular sector graphene billiards by diag-
onalizing the mean-field Hubbard Hamiltonian through an
iterative approach and obtain the spectral statistics in different
energy ranges. In general, the spectral properties depend on
the Hubbard interactions. To identify the nature of the spec-
tral statistics, we take the representative eigenwave functions
in the energy range of interest and examine their regularity,
where regular and irregular eigenstates typically correspond
to Poisson and GOE statistics, respectively. A common situ-
ation is that the spectral properties lie somewhere in between
Poisson and GOE statistics. In this case, we employ an
interpolation fit by assuming that the Hamiltonian matrix
is a composition, with appropriate weights, of the matri-
ces that generate Poisson and GOE statistics [53,54]. For

nonrelativistic quantum systems, previous works [4,10] in-
dicated that strengthening the electron-electron interactions
makes the Hamiltonian more complicated, and their spectra
align more closely with the random-matrix ensemble statis-
tics. However, we find that, for graphene billiards in most
energy ranges, the spectral statistics are insensitive to the
Hubbard interaction but with an exception: for energies close
to the Dirac point, the Hubbard interactions tend to drive the
spectral statistics toward the GOE, regardless of the nature
of the initial statistics in the absence of such interactions.
This continual evolution toward GOE holds until the Hubbard
interaction strength reaches a critical point of transition from
ferromagnetic to antiferromagnetic order [25,55]. A surpris-
ing phenomenon is that, as the interaction strength increases
further from the critical value, due to the emergence of a gap
and a metamorphosis in the behavior of the quasiparticles, the
spectral statistics tend to approach Poisson. Taken together,
as schematically illustrated in Fig. 1, when the interaction
strength increases from zero, three distinct regimes can arise:
(1) a weak interaction regime in which distinct spectral statis-
tics exist, (2) an intermediate interaction regime (about the
critical point) in which the statistics are universally GOE,
and (3) a strong interaction regime in which the statistics are
universally Poisson. We articulate a physical picture based
on the energy band structure to heuristically understand these
behaviors. The transition toward one universal class (GOE)
and then to another (Poisson) as the many-body interaction
strength increases, regardless of the nature of the spectral
statistics to begin with, is particularly striking. Our results elu-
cidate the interplay between many-body interactions and the
spectral statistics of relativistic quantum systems and repre-
sent a contribution not only to the field of relativistic quantum
chaos but, more broadly, to fundamental physics.

II. MANY-BODY HAMILTONIAN
AND SOLUTION METHOD

A. Mean-field Hubbard Hamiltonian

To incorporate electron-electron interactions into the quan-
tum dynamics of a sector-shaped graphene billiard, we use the
one-orbital mean-field Hubbard model [18,56,57]. The model
Hamiltonian has two parts: a π -orbital tight-binding Hamil-
tonian HTB for a single particle and the Hubbard potential
HU that describes the repulsive electron-electron Coulomb
interactions:

H = HTB + HU , (1)

where

HTB = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ , (2)

the summation is over all pairs of nearest neighboring sites
〈i, j〉, the index σ denotes spin, and c†

i,σ (c j,σ ) is the cre-
ation (annihilation) operator at site i ( j) for spin σ . The
nearest neighbor hopping energy is t = 2.8 eV [25]. The elec-
tronic band structure of graphene can be described by the
tight-binding model. The electrons interact with each other
via a screened Coulomb potential, which can be approxi-
mated by the Hubbard potential that is introduced through the
short-range repulsive onsite Coulomb interaction strength U
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FIG. 1. Main result of the paper: effects of many-body Hubbard interactions on the spectral statistics of circular sector graphene billiards
for energies near the Dirac point. Schematically shown is the characteristic evolution of the energy level spacing distribution as the Hubbard
interaction strength U increases from zero. The starting point is U = 0, at which the level spacing statistics can be either Poisson or Gaussian
orthogonal ensemble (GOE), where the inset shows the corresponding spatial distribution of the eigenstates, which is typically regular for
Poisson and irregular for GOE. As U increases toward a critical point Uc, the level spacing distributions approach GOE, regardless of the
nature of the initial distribution at U = 0. As U increases from Uc, the statistics evolve toward universally Poisson.

as

HU = U
∑

i

ni,σ ni,σ̄ , (3)

where σ̄ is the opposite spin to σ stipulated by the Pauli exclu-
sion principle, and ni,σ = c†

i,σ ci,σ is the number operator. Due
to the exponential growth of the Hilbert space dimension with
the number N of electrons, the diagonalization and analysis
become computationally difficult even for moderate system
sizes with only tens of atoms. A solution is to take advantage
of the mean-field approximation [58–63]:

HMF = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U
∑
i,σ

〈ni,σ̄ 〉n̂i,σ , (4)

where the mean-field Hamiltonian describes the situation in
which a spin-σ electron at site i interacts with the average
spin-σ̄ electron population 〈ni,σ̄ 〉 at the same site and vice
versa. This mean-field Hubbard model is like those deduced
from the first-principle or quantum Monte Carlo calculations,
suggesting that the mean-field approximation is suitable for
graphene [48,59,60,64,65], especially in the weak-coupling
regime [48,59]. Another issue of possible concern is the
range of the physically meaningful value of U in Eq. (3).
At present there is no consensus on the actual values of
U for graphene [56], due to the lack of experiments with
magnetic graphene systems which would allow U to be es-
timated more accurately [57]. Previous discussions indicated
that the value of U can range from 2.8 to 8.4 eV for graphene
quantum dots [55,61,66]. It has been known that, when the
onsite Coulomb repulsion potential approaches the critical
value Uc/t ∼ 2.23, the honeycomb lattice Hamiltonian will
experience a symmetry-breaking process with a phase tran-
sition from ferromagnetic order (below the critical value) to
antiferromagnetic order (above the critical value) [25,55,67].

For our theoretical study herein, we employ the honeycomb
lattice model and treat U as a control parameter in the range
of U/t ∈ [0, 3] to uncover and quantify the effects of the
electron-electron interaction strength on the spectral statistics,
especially before and after the transition point Uc. As will be
shown in Sec. III, about the phase transition point, the spectral
statistics are close to GOE.

To solve the eigenvalues and eigenvectors from the Hamil-
tonian in Eq. (4), we employ an iterative procedure [18]
and assume that the graphene system is at half-filling of π

electrons, corresponding to electronically neutral graphene, at
zero temperature [56]. This half-filling is the commonly ex-
ploited situation in the literature [48,56,68–70], as it exhibits
interesting phenomena such as Mott insulating behavior and
antiferromagnetic order [71,72]. Assigning an initial value
of 〈ni,σ̄ 〉 to site i, we write the Hamiltonian in Eq. (4) for
spin-σ electrons in a matrix form, where the eigenenergies
and eigenstates can be solved using direct diagonalization.
From the eigenstates ψα,σ associated with spin σ , the mean
occupation number at site i can be obtained as

〈ni,σ 〉 =
N/2∑
α=1

|ψα,σ (i)|2.

With 〈ni,σ 〉, the eigenenergies and eigenstates for spin σ̄ can
be obtained directly from the corresponding Hamiltonian in
Eq. (4), from which 〈ni,σ̄ 〉 can be derived similarly, complet-
ing one iteration. The process repeats until 〈ni,σ 〉 and 〈ni,σ̄ 〉
reach a steady state, yielding spin-resolved single-particle
spectra [56,59,73].

B. Circular sector graphene billiards

A circular sector graphene billiard can be cut from a
graphene sheet, where it was found previously that, for most
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FIG. 2. Circular sector graphene billiards. The concentric angle
is (a) 15◦ and (b) 60◦. The two nonequivalent atoms in a unit cell of
the graphene lattice, namely, A and B atoms, are marked as blue
and orange circles, respectively. The painting of the lattice uses
pybinding [74].

concentric angles, the spectral statistics are close to GOE
for energy levels about the Dirac point in the absence of
electron-electron interactions [38]. (It is worth noting that,
for the corresponding Schrödinger billiards, the statistics are
Poisson [38].) There are a few exceptions. For example, for
the 60◦ graphene sector with perfect zigzag or armchair radial
boundaries, the spectral statistics are Poisson. To be concrete,
we consider one example from each category: (1) a 15◦ sector
with one radial edge being zigzag and the other radial edge
being a mixture of zigzag and armchair [denoted as 15◦ZM,
Fig. 2(a)], and (2) a 60◦ sector with both radial edges being
armchair [denoted as 60◦AA, Fig. 2(b)], where the respective
spectral statistics are GOE and Poisson for energy levels about
the Dirac point in the absence of Hubbard interactions.

The parameter values of the two sector billiard systems
are as follows. The 15◦ZM billiard has N = 40 328 atoms,
with size ∼90 × 25 nm. The 60◦AA billiard has N = 42 540
atoms, with size ∼46 × 40 nm. For both systems, the iterative
procedure can obtain the corresponding spin-resolved single-
particle spectrum of N energy levels [56,59,73]; thus, we can
have a sufficiently large number of energy levels, e.g., 500 or
1000, for different energy ranges to generate accurate spectral
statistics.

C. Spectral statistics

We divide the spectra about the Dirac point into several
components and unfold each separately. For eigenenergies
E1 � E2 � E3 � · · · , let 〈Nc(E )〉 be the smoothed function of
the counting function Nc(E ) for the number of eigenenergies
below E . The unfolded spectra are given by Eu

j ≡ 〈Nc(Ej )〉,
and the level spacing is S j = Eu

j+1 − Eu
j . The following re-

sults have been well established in the field of traditional
(nonrelativistic) quantum chaos [2]. If the classical system is
integrable, the level spacing follows the Poisson distribution:

P(S) = exp(−S).

When the classical dynamics are fully chaotic and do not
possess any geometric symmetry, GOE statistics arise:

P(S) =
(π

2

)
S exp

(
−πS2

4

)
.

An intermediate type of statistics between Poisson and GOE,
the so-called semi-Poisson statistics [75], can also arise:

P(S) = 4S exp(−2S).

With the level spacing distribution P(S), the accumulated
distribution can be obtained as

I (S) =
∫ S

0
P(S′)dS′.

Two additional relevant quantities are the number variance
�2(L) and the spectral rigidity �3(L), where L is the number
of mean level spacing [2].

To have a reference for the spectral statistics, we adopt a
parameter-dependent random matrix model that interpolates
between random matrices exhibiting Poisson and GOE statis-
tics [53,54]:

H (λ) = H0 + λH1√
1 + λ2

, (5)

where H0 belongs to a diagonal matrix of random Poisson
numbers, H1 is a random matrix with GOE statistics, and the
variances of the matrix elements of H0 and H1 are chosen
such that their eigenvalues have the same mean spacing. As
the number of levels in each group in this paper is within
600, for matrices H0 and H1, the size is also set as 600. As
the control parameter λ changes from zero to infinity, the
spectral fluctuations of H (λ) exhibit a transition from Poisson
to GOE. Since the spectral properties are already close to
GOE for λ � 1, we set the maximum value of λ to be six. To
estimate the parameter λ for a given spectrum, we generate
a series of spectra from the random matrix model Eq. (5)
with λ values ranging from 0 to 6 at the incremental step of
0.01 and calculate the relevant functions �2(L) and �3(L).
We then calculate the variance between these functions from
the given spectral data and the standard references from the
random matrix model. Those with the minimum variance are
deemed proper. In our calculation, �2(L) and �3(L) typically
account for long-range correlations, but �2(L) would be too
sensitive when L is large and may yield spurious results. To
overcome this difficulty, in the calculation of λ, we constrain
L in the range (0, 2) for �2(L) and L ∈ (0, 10) for �3(L).

III. RESULTS

Examining the spectral statistics in different energy ranges,
we find that the Hubbard electron-electron interactions will
affect the spectral statistics but only for energies near the
Dirac point. Particularly, since the Dirac point (or the gap) is
around N/2, in the following, we shall focus on the energy
levels in the range [N/2 − 1000, N/2 + 1000] with a total
of ∼2000 levels and investigate how the spectral statistics
change as the Hubbard interaction increases. Our calculations
reveal a simplification: the spectral statistics for spin-up and
spin-down energy spectra are indistinguishable. It thus suf-
fices to focus on the spectral statistics of the eigenenergies for
one spin direction, e.g., the spin-down spectra.

A. Energy range and spin for spectral statistics

To determine a proper energy range for analysis, we
compare the level spacing statistics between two cases: one
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FIG. 3. Effect of electron-electron interaction on the level spac-
ing distributions of the 60◦AA graphene billiard in different energy
ranges. For U = 0, the energy range E/t and the number of energy
levels are (a) [0.02, 0.4], 638; (b) [0.5, 0.7], 1092; (c) [2, 2.1], 713;
and (d) [2.9, 3], 568, respectively. For U = 2t , the Dirac point is
shifted to E/t = 1, the energy range and the number of energy levels
are (e) [1.02, 1.4], 648; (f) [1.5, 1.7], 1092; (g) [3, 3.1], 712; and
(h) [3.9, 4], 568, respectively. The insets show the density of states
and the corresponding energy ranges (blue shaded region) used in
the analysis of the levelspacing distribution. The histograms show
the numerical results in comparison with the Poisson (solid curve)
and Gaussian orthogonal ensemble (GOE; dashed curve) statistics.

without electron-electron interaction (U = 0) and the other
with a sufficiently large Hubbard strength (U = 2t) for the
60◦AA graphene billiard, as shown in Fig. 3, where the insets
display the density of states with the blue shaded region in-
dicating the energy range used to calculate the level spacing
statistics. The left and right columns of Fig. 3 are for U = 0
and 2t , respectively. Figures 3(a) and 3(e) are for the energy
levels about the Dirac point, where the level-spacing distribu-
tion is Poisson for U = 0 and GOE for U = 2t . Figures 3(b)
and 3(f) show the statistics in an energy range slightly further
from the Dirac point for U = 0 and 2t , respectively, and the
corresponding results in an energy range far below the band
edge are shown in Figs. 3(c) and 3(g). In these four cases, the
statistics are GOE. Figures 3(d) and 3(h) show the statistics at
the band edge so that the quasiparticles are described by the
Schrödinger equation with a modified effective mass, where
the level spacing statistics are Poisson for both U = 0 and 2t .
From these results, we conclude that the Hubbard interactions
affect the level spacing statistics but only for energies around

FIG. 4. Comparison of spectral statistics for spin-up and spin-
down spectra for the 15◦ZM and 60◦AA graphene sector billiards
with eigenenergies close to the Dirac point. (a) The nearest neighbor
level spacing distribution P(S), (b) the cumulative distribution I (S)
subtracting that of the Poisson distribution IP(S), (c) the number
variance �2(L), and (d) the spectral rigidity �3(L). For spin-up
and spin-down spectra, the energy ranges are (E (N/2), E (N/2 +
500)) and (E (N/2 − 500), E (N/2)), respectively. The solid, dash-
dotted, and dashed curves are the random matrix results for Poisson,
semi-Poisson, and Gaussian orthogonal ensemble (GOE) statistics,
respectively.

the Dirac point, where a change from Poisson [Fig. 3(a)] to
GOE [Fig. 3(e)] occurs as the interaction strength changes
from U = 0 to 2t . Away from the Dirac point, the statistics
are either GOE or Poisson, regardless of the presence of
the Hubbard interactions. Note that the slight deviation of
the result in Fig. 3(a) from the Poisson statistics is due to the
finite size of the system [38]. In the following, we shall focus
on the eigenenergies near the Dirac point.

To distinguish the effect of spin orientation, we choose the
spin-resolved energy spectra in the ranges (E (N/2), E (N/2 +
500)) and (E (N/2 − 500), E (N/2)) for spin-up and spin-
down spectra, respectively, for the two graphene sector
billiards 15◦ZM and 60◦AA with U = 2t and a case of U = 1t
for 60◦AA, where E (N/2) = 0 is the energy of the Dirac
point. We disregard the edge states in the vicinity of the
Dirac point. Figure 4 shows the spectral statistics, i.e., the
distribution of the unfolded level spacing P(S), the cumulative
distribution I (S) = ∫ S

0 P(S′)dS′, the number variance �2(L),
and the spectral rigidity �3(L) for the three cases and the two
spin orientations. It can be seen that P(S), I (S), and �3(L) are
practically indistinguishable for the spin-up and spin-down
spectra, with only a small discrepancy appearing in the �2(L)
statistics. This can be understood from the mean-field Hub-
bard Hamiltonian in Eq. (4), where the physical properties
associated with the two spin orientations are symmetric to
each other.
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FIG. 5. Determination of the random matrix parameter λ as an
indicator to interpolate between Poisson and Gaussian orthogonal en-
semble (GOE). Shown is the best-fitted parameter λ obtained through
a comparison between the calculated spectra with the standard �2(L)
(red up triangles) and �3(L) (blue circles) statistics from random
matrices constructed from Eq. (5) vs U/t for the 60◦AA graphene bil-
liard. (a)–(d) Results for regions 1–4, respectively, which are marked
in the insets of (a) for U = 0 and (d) for U/t = 2.3.

B. Spectral statistics of 60◦AA graphene billiard

We collect 2000 eigenenergies around the Dirac point
in the energy range [E (N/2 − 1000), E (N/2 + 1000)] and
divide them into four subregions: [E (N/2 − 500), E (N/2)),
(E (N/2), E (N/2 + 500)], [E (N/2 − 1000), E (N/2 − 500)),
and (E (N/2 + 500), E (N/2 + 1000)], denoted as regions
1–4, respectively. For U = 0, the corresponding energy
ranges for the four regions are respectively [−0.3496t, 0),
(0, 0.3496t], [−0.4916t,−0.3496t ), (0.3496t, 0.4916t], as
marked in the inset of Fig. 5(a). In addition, near degenerate
levels (<0.001 of normal level spacings) are removed before
further treatment. This categorization can provide signatures
of the spectral properties of eigenenergies close to the Dirac
point through a comparison, as eigenenergies in regions 1 and
2 are closer to the Dirac point than those in regions 3 and 4.

Figure 5 shows the best-fit parameter λ as a function of
the relative electron-electron interaction strength U/t . In all
cases, for U = 0 so that the energies are all close to the Dirac
point, λ is small and ∼0.5, indicating Poisson-like spectral
statistics. Note that the λ values for regions 3 and 4 are slightly
larger than those for regions 1 and 2 because they are further
away from the Dirac point than regions 1 and 2. This behavior
is consistent with those in Figs. 3(a) and 3(b) in the sense
that, away from the Dirac point, the spectral statistics change
from Poisson to GOE. As U becomes larger, λ also increases,
and its values in regions 3 and 4 are generally larger than
those in regions 1 and 2. The main difference between regions

FIG. 6. Deviation of the accumulated distribution from Gaussian
orthogonal ensemble (GOE) and the number variance for the 60◦AA
graphene billiard. Shown are I (S) − IGOE(S) and �2(L) for region 1
under different electron-electron interaction strength ranging from 0
to 3t . Here, the coordinates U/t are not linear, as they are normalized
to the corresponding Poisson (solid), semi-Poisson (dash-dotted),
and GOE (dashed) curves at U/t = 3.

(1,2) and regions (3,4) is that, the former reaches a peak
about U/t = 2.1 with λ values >1, indicating a transition to
GOE-like spectral statistics. As U increases further, λ reduces
to ∼0.5, signifying a return to Poisson-like spectral statistics.
For regions 3 and 4, λ increases approximately monotonically
with U , indicating a monotonous transition from Poisson-like
to GOE-like statistics. The behaviors of λ extracted from
�2(L) and �3(L) are mostly consistent with each other, except
a few cases due to the different L ranges about U/t = 3, as
shown in Figs. 5(c) and 5(d). The different responses of λ

between regions 1 (2) and 3 (4) give a rough indicator of the
energy range that can be deemed as the neighborhood of the
Dirac point.

The transition in the spectral statistics is further elaborated
in Fig. 6 which shows I (S) − IGOE(S) and �2(L) for differ-
ent U values. In the plot of I (S) − IGOE(S), three theoretical
curves are also presented as a reference: the corresponding
quantity for Poisson, the intermediate semi-Poisson, and GOE
(the horizontal line at zero). As U/t increases from 0 to 2.1,
starting from close to Poisson, the curves for the data shrink
continually, passing the semi-Poisson curve, and approach
the zero horizontal line for GOE. However, as U increases
further, the data curves in the I (S) − IGOE(S) plot expand and
deviate away from the zero horizontal line, i.e., returning to
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FIG. 7. Effect of electron-electron interactions on the wave func-
tion intensity |ψ j |2 for the 60◦AA sector graphene billiard. (a)–(c) In
region 2, |ψ j |2 for U = 0, 2t , and 3t , respectively. Each sub-
graph contains six panels, corresponding to the 21 304th, 21 333rd,
21 397th, 21 525th, 21 625th, and 21 672nd eigenstates, respectively.
(d) For region 4, representative plots of the 21 800th to the 22 200th
eigenstates with an interval of 80 between two neighboring panels
for U = 3t . The scales for different panels are selected differently
for better visualization. The system size is N = 42 540.

Poisson. Note that the semi-Poisson curve is included just as
a reference, as it represents only an intermediate case in the
change of the parameter U . The plots of �2(L) show similar
features, i.e., the data curves decrease from close to Poisson,
and arrive at a curve that is close to GOE at U/t = 2.1 but
then increase and pass the semi-Poisson line.

The distinct spectral statistics for different values of the
Hubbard interaction strength U are also corroborated by the
eigenwave functions, as shown by four different cases in
Fig. 7, where six eigenstates around the Dirac point are dis-
played for each case. For U = 0, the spectral statistics are
close to Poisson, and most of the eigenwave functions ex-
hibit regular patterns, as exemplified in panels 1–4 and 6 in
Fig. 7(a), but some eigenstates exhibit irregular patterns, as
illustrated in panel 5, which are not uncommon when the
spectral statistics follow those of random matrix ensembles.
These irregular states are the main cause of the deviation of
the spectral statistics from Poisson. For U = 2t , as shown in
Fig. 7(b), most eigenstates are irregular, which is in accor-
dance with the observed GOE-like statistics demonstrated in
Fig. 6 for the same U value. This suggests that, as the Hubbard
interaction increases from zero, most of the eigenstates change
from regular to irregular, leading to the observed change from
Poisson-like to GOE-like spectral statistics.

For U = 3t , most states become regular again, as shown in
Fig. 7(c), due to the onset of antiferromagnetic order leading
to the effective staggered potential. In addition, some states

are like the eigenstates of the nonrelativistic quantum billiards
described by the Schrödinger equation with the Dirichlet
boundary condition, e.g.,

ψS,mn ∼ sin

(
mπφ

φ0

)
Jmπ/φ0 (kmnρ)

with m, n = 1, 2, · · · and kmn being the eigenwave numbers.
For example, the quantum number sets for panels 1 and 2 are
(m, n) = (6, 1) and (2, 7), respectively. These are different
from the eigenstates close to the Dirac point in a graphene
billiard without Hubbard interactions, as shown in Fig. 7(a).
This indicates that, while the spectral statistics return to
Poisson-like in the large U regime, the eigenstates of the
system do not return to those in the U = 0 case but undergo
a metamorphosis in that they become nonrelativistic quantum
states as in a nonrelativistic quantum billiard corresponding
to the case about the band edge, e.g., E/t ∼ ±3 in the U = 0
graphene billiard. Indeed, about U/t � 2.2, a gap begins to
open and becomes larger as U increases further [76], leading
to nonrelativistic quantum behaviors, especially at the bottom
of the band when the effective wave number is small.

For regions 3 and 4, the general tendency of λ is to increase
with U/t , from <1 to >1, as shown in Figs. 5(c) and 5(d),
signifying a transition of the spectral properties from Poisson-
like to GOE-like statistics. For U = 3t , in contrast to the
behaviors in regions 1 and 2, the spectral statistics do not
return to Poisson but are even closer to GOE. This can also be
corroborated from the wave function patterns, as exemplified
in Fig. 7(d), which are apparently irregular.

C. Spectral statistics of 15◦ZM graphene billiard

We have seen from Sec. III B that, for the 60◦AA graphene
billiard, when Hubbard interactions are not present, the spec-
tral statistics are close to Poisson, making the changes in
the spectral statistics significant as U increases. However,
for most graphene sector billiards, the spectral statistics are
already GOE-like for eigenenergies about the Dirac point even
for U = 0, so the expectation is that, as U increases, the
changes in the spectral statistics, if any, would be insignifi-
cant. To test if this expectation holds, we consider the 15◦ZM
graphene billiard and examine the responses of the spectral
statistics to tuning on the Hubbard interaction. As will be
shown below, the interplay between many-body interactions
and the spectral statistics can be interestingly nontrivial with
unexpected features.

In regions 1 and 2 close to the Dirac point, as shown respec-
tively in Figs. 8(a) and 8(b), for U = 0, the spectral statistics
are approximately GOE, so λ ≈ 2. A previous work demon-
strated that, for larger systems, the statistics are perfectly
GOE [38]. As U increases, λ reaches the maximum value
around U/t = 2.2 despite fluctuations. As U increases further
to U/t = 3, λ decreases. For region 1 (below the Dirac point),
the value of λ becomes <1, leading to semi-Poisson statistics.
However, for region 2 (above the Dirac point), the value of λ

decreases to ∼0, giving rise to Poisson statistics. The changes
occur continuously with U . These results are surprising be-
cause the expectation is that the spectral behaviors for energies
above and below the Dirac point should be the same. However,
under strong Hubbard interactions, the system can be in the
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FIG. 8. The random matrix parameter λ interpolating between
Poisson and Gaussian orthogonal ensemble (GOE) for the 15◦ZM
graphene billiard. Legends are the same as those in Fig. 5.

antiferromagnetic phase, so the spectral statistics can be quite
different for eigenenergies below and above the Dirac point.
(This phenomenon does not occur in the 60◦AA graphene
billiard system treated in Sec. III B.) We have checked the
spectral statistics in the two regions with U = 3t for other
graphene sector billiards with different angles and observed
similar behavior. The results are summarized in the Appendix.

In regions 3 and 4, as shown in Figs. 8(c) and 8(d), the
values of λ are all >1 for all values of U , indicating that the
spectral properties are all close to GOE. This is consistent with
the results in Figs. 3 and 5 that higher energies or stronger
electron-electron interactions typically lead to GOE-like spec-
tral statistics. Nevertheless, as U increases, with oscillations,
λ reaches the maximum around U = 2t according to both the
�2(L) and �3(L) statistics.

Figure 9 displays the integrated level spacing distribution
I (S) − IGOE(S) and the number variance �2(L) for different
U values for regions 1 and 2. For most U values, the I (S) −
IGOE(S) curves are ∼0, indicating GOE-like spectral statistics.
For U approaching 3t , the curves in region 1 rise slightly and
approach the semi-Poisson curve, but those in region 2 rise
significantly to approach Poisson. Similar behaviors occur in
the �2(L) curves.

To understand the distinct behaviors in regions 1 and 2
for U = 3t , we display the representative eigenwave functions
from the two regions in Fig. 10, where Figs. 10(a1) and 10(a2)
show the lowest nonlocalized eigenstates with respect to the
Dirac point from both sides. The eigenstates are similar and
resemble the first eigenstate in the corresponding Schrödinger
billiard. Note that, for such a large value U , the Dirac point
has already been destroyed and a gap appears—here, the Dirac
point is only used as a reference point for regions 1 and 2 with

FIG. 9. Deviation of the accumulated distribution from Gaussian
orthogonal ensemble (GOE) and the number variance for the 15◦ZM
graphene billiard. Shown are I (S) − IGOE(S) and �2(L) for regions
1 (blue) and 2 (red) for U values ranging from 0 to 3t . The circles
are for region 1 (red curves), and the squares are for region 2 (blue
curves). The coordinate of U/t is not linear for a clear comparison
with the corresponding Poisson (solid), semi-Poisson (dash-dotted),
and GOE (dashed) curves for U/t = 3.

the highly localized states neglected. Figures 10(a1)–10(l1)
and 10(a2)–10(l2) show 12 representative eigenstates for each
region in a span of 440 eigenstates that are sampled at the
interval of 40 between two neighboring panels. Apparently,
the eigenstates in the two regions are quite distinct. In region
1, only the first four eigenstates are regular, and most others
are irregular, as the spectral statistics are semi-Poisson. In
contrast, in region 2, the first eight eigenstates are regular, and
there are only a few irregular states, which are consistent with
the Poisson spectral statistics in this region.

IV. HEURISTIC UNDERSTANDING OF MANY-BODY
SPECTRAL STATISTICS

The many-body interaction mediated transition in the spec-
tral properties observed from the 60◦AA and 15◦ZM graphene
billiard systems can be understood through the mean-field
Hamiltonian in Eq. (4). Recall that the eigenenergy spectrum
is obtained by iteratively solving the eigenenergies of Eq. (4)
when a steady state is reached. The mean-field Hamiltonian
matrix can be written as

HMF,σ = HTB + HUσ ,
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FIG. 10. Distributions of wave function intensity |ψ j |2 for the
15◦ZM sector graphene billiard for U = 3t . (a1)–(l1) |ψ j |2 of the
20 138th to the 19 698th eigenstates with a step of 40 eigenstates
between two adjacent panels, whose eigenenergies belong to the
energy range of region 1. (a2)–(l2) |ψ j |2 for the 20 199th to the
20 639th eigenstates in region 2. Brighter colors correspond to larger
values of |ψ j |2. The scales in different panels are chosen differently
for better visualization.

where HTB is the hopping term (HTB,i j = −t if sites i and j
are nearest neighbors, and HTB,i j = 0 otherwise), and HUσ

is a diagonal matrix associated with the Hubbard interaction
term for spin-σ states that can effectively be regarded as an
onsite potential:

HUσ,ii = U 〈ni,σ̄ 〉 for i = 1, · · · , N,

HUσ,i j = 0 for i �= j.

Without loss of generality, we examine the average density
distribution for spin-up electrons, i.e., 〈ni,↑〉. Below the critical
point Uc, we have 〈ni,↑〉 = 0.5 for most atoms in the billiard
region. Significant deviations from the average occur mostly
on the atoms near the billiard boundary, which are then spin
polarized (up or down). An example is presented in Fig. 11(a)
for U ∼ 0.5t , where the values of 〈ni,↑〉 for both A and B
atoms are shown. The corresponding density distribution in
the physical space is shown in Fig. 11(d). For U above the
critical point, most atoms are polarized. If atom i belongs
to the sublattice A (B), we have 〈ni,↑〉 > 0.5 (〈ni,↑〉 < 0.5).
From the relation HU↓,ii = U 〈ni,↑〉, we have that the onsite
potential for spin-down electrons is positive for one sublattice
and negative for the other sublattice with a shift U/2, which
is effectively a staggered potential and generates a mass term
mσz for the effective Dirac Hamiltonian. The effective mass
m depends on U and becomes larger as U increases. When U
exceeds a critical value, the original Dirac point is destroyed,
opening an energy gap. Since the energy range of interest is
close to the Dirac point, we have h̄2k2 � m, so the collec-
tive modes are now described by the Schrödinger equation,

FIG. 11. Average electron density 〈ni,↑〉 for spin-up states asso-
ciated with A and B lattices in an increasing order. (a) 15◦ZM with
U = 0.5t , (b) 15◦ZM with U = 3t , and (c) 60◦AA with U = 3t . (d)–
(f) Spatial distribution of 〈ni,↑〉 corresponding to (a)–(c), respectively,
where a magnification of a small fragment of edges marked by the
small red rectangle in each panel is shown. Only those atoms whose
〈ni,↑〉 values deviate from the average electron density in the billiard
are plotted.

leading to wave functions with regular spatial patterns and
Poisson spectral statistics.

Specifically, we assume different but uniform onsite po-
tentials UA and UB for A and B atoms (UA > UB). About
the original Dirac point (with a gap), the dispersion relation
between E↓ for the spin-down states and the wave vector
is [77]

E↓ = 1
2 {UA + UB ± [(UA − UB)2 + 4|H12|2]1/2}, (6)

where H12 is given by the plane-wave assumption and the
overlap integral t between the wave functions centered at atom
A and one of its nearest neighbors B under the lattice potential
can be determined through

H12 = −t

[
exp

(
−2π ikxa√

3

)
+ 2 cos(πkya) exp

(
2π ikxa

2
√

3

)]
,

where a = 2.46 Å is the lattice constant. For |H12| � (UA −
UB), Eq. (6) can be simplified to

E↓,+ = UA + |H12|2
UA − UB

, (7)

E↓,− = UB − |H12|2
UA − UB

. (8)

Close to the Dirac point, we have

|H12| ≈
√

3πt |k − kD|a,

so E↓,± is parabolic in |k − kD|, which approximates the
dispersion relation of a Schrödinger particle.
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On the zigzag boundary or a zigzag segment, some A (B)
atoms have a different value of 〈ni,↑〉 than the values of most
of the other A (B) atoms inside the billiard, as shown in
Figs. 11(d)–11(f). This results in the emergence of correlation
among the energy levels, leading to a deviation from the
Poisson toward GOE-like statistics. As shown in Fig. 11(b),
if the zigzag boundaries are long, 〈ni,↑〉 is generally not sym-
metric for A and B atoms, e.g., one type of sublattice atom
can have a broader distribution of the density values than the
other sublattice atoms. The atoms with extraordinary density
values are mostly located at the boundaries, as illustrated in
Figs. 11(d)–11(f). For example, in our convention, the most
outward atoms at the long bottom zigzag boundary of the
15◦ZM billiard are of type B. For most of B atoms in the
inner part of the billiard, for U = 3t , we have 〈ni,↑〉 ≈ 0.27.
However, for the A atoms, we have 〈ni,↑〉 ≈ 0.72. At the long
bottom zigzag boundary [Fig. 11(e)], the values of 〈ni,↑〉 on
the B atoms can be as high as 0.82, even higher than those
of typical A atoms. On the contrary, the nearby A atoms
have a markedly smaller value, i.e., ∼0.33 instead of 0.72,
but still larger than the typical values for B atoms. These
lead to abnormal onsite potentials on the zigzag boundaries
and further result in longer-range arclike structures around
them. In the inner domain of the billiard, a dual-value density
distribution arises: 0.72 for A and 0.27 for B. Since the onsite
potential can be regarded as the effective mass, the deviations
from the values of the inner atoms effectively form a mass
disorder. The amount and amplitude of the disorder are much
larger for UB than those for UA, making E↓,− more random
than E↓,+. This is consistent with the results that, in energy
region 1 (energy levels below the Dirac point, corresponding
to E↓,− and B atoms), the spectral statistic deviates further
from Poisson than that in region 2 (energy levels above the
Dirac point, corresponding to E↓,+ and A atoms).

V. DISCUSSION

Uncovering and understanding the effects of many-body
interactions on the spectral statistics has long been recognized
as a fundamental problem in quantum chaos, but previous
works focused on nonrelativistic, Schrödinger quantum sys-
tems [4–14]. How many-body interactions affect the energy
level statistics in relativistic quantum systems remains largely
unexplored. This paper represents a step forward in this
direction. Utilizing circular sector graphene billiards as a pro-
totypical system and treating the electron-electron interactions
through the Hubbard formalism, we systematically investigate
the evolution of the spectral properties as the many-body Hub-
bard interaction strength increases from zero. The graphene
billiard system is experimentally feasible and can be tuned to
exhibit relativistic quantum or nonrelativistic quantum charac-
teristics. Especially for energy levels about the Dirac point, the
system is in the relativistic quantum regime, while for energies
close to the band edge, the system becomes of the Schrödinger
type.

The contribution of this paper is that, as the many-body
Hubbard interaction strength U is tuned, the level spacing
distribution in the relativistic quantum regime can exhibit
a surprising transition scenario. Specifically, we have taken
two distinct systems that exhibit characteristically different

spectral statistics in the absence of many-body interactions:
the 60◦AA and 15◦ZM circular sector graphene billiards,
where the level spacing statistics are of the Poisson type for
the former and GOE type for the latter for U = 0. For the
60◦AA billiard, the following transition scenario occurs. As
U increases from zero, a transition from Poisson to GOE
occurs below the critical value Uc, but as U increases further,
a transition back to Poisson occurs. The first transition (i.e.,
the one from Poisson to GOE for U < Uc) occurs gradually,
with the spectral statistics most close to GOE slightly below
the critical point. For the 15◦ZM graphene billiard, as U
increases from zero, the spectral statistics remain GOE-like
and become maximally GOE (as characterized by the quantity
λ) near the critical point. As U increases further, a transition to
Poisson-like statistics occurs. The transitions can be visually
confirmed by examining the spatial patterns of the eigenstates,
as the Poisson and GOE statistics typically correspond to
regular and irregular patterns, respectively. As summarized in
Fig. 1, the key finding of this paper is the following striking
phenomenon: regardless of the nature of the spectral statistics
to begin with, as the Hubbard interaction strength increases
from zero toward a critical point, GOE statistics dominate but,
passing through the critical point as the interaction strength
increases further, a transition to Poisson statistics occurs for
both of the circular sector billiards.

In general, Hubbard interactions will make the system
more complex so that the spectral statistics would be GOE.
Previous works revealed a sharp transition to GOE with even
weak Hubbard interactions at low filling [8]. For the 60◦AA
billiard system studied in this paper, at half-filling, the tran-
sition in the spectral statistics from Poisson to GOE occurs
gradually. Furthermore, for strong Hubbard interactions (e.g.,
U = 3t) and for systems with long zigzag boundaries, the
effective potential of the atoms on sublattices A and B are not
symmetric. Along the long zigzag boundaries, the outermost
B atoms mostly have low effective potentials, but some B
atoms can have a drastically large potential accompanied by
a sharp reduction in the potential value for nearby A atoms, as
described in Sec. IV. This uneven effective potential distribu-
tion for atoms on the two sublattices of graphene is the reason
for the observed distinct transition behaviors in the statistics
for the spectrum below and above the gap at large U .

The main finding of this paper, i.e., the transitions to GOE
and then to Poisson level spacing statistics, was obtained using
the mean-field Hubbard model. A question is whether the
transitions are not an artifact of the mean-field approximation.
Indeed, this approximation is valid in the weak interaction
regime with relatively small values of the electron-electron
interaction strength U , as previously demonstrated through a
comparison with the results from density function theory [59]
or from the quantum Monte Carlo method [67]. In the strong
interaction regime, the mean-field model may break down.
However, there is a physical justification for the validity of our
finding. The uncovered transitions to GOE and then to Poisson
level spacing statistics hinge on two factors: (1) the occur-
rence of the phase transition in the honeycomb lattice from
ferromagnetic to antiferromagnetic order and (2) the opening
of an energy gap. For example, a transition in the spectral
statistics takes place when U is about Uc ∼ 2.1t where the
statistics are effectively GOE, as demonstrated in Figs. 5(a)
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FIG. 12. Spectral properties of additional circular sector
graphene billiards. Shown are the �2(L) statistics for different
circular sector graphene billiards for U = 3t : (a) 15◦AM, (b) 60◦ZZ,
(c) 45◦AM, and (d) 45◦ZM, where the notations A, M, and Z stand
for armchair, mixed, and zigzag boundaries, respectively. A zoom-in
close to the tip is shown as the insets. The orange circles and blue
squares represent the data of regions 1 and 2, respectively.

and 5(b) for the 60◦AA billiard and in Figs. 8(a) and 8(b)
for the 15◦ZM billiard. This value of Uc is close to the phase
transition point 2.23t where the honeycomb lattice transitions
from ferromagnetic to antiferromagnetic order [67]. Beyond
the critical value Uc, a gap opens, and the effective onsite
potentials for the A and B atoms in the graphene lattice
begin to deviate from each other. The difference becomes
larger as U increases further, contributing effectively a mass
term to the Dirac Hamiltonian and rendering the relativistic
quantum quasiparticles on the lattice massive. As a result, in
the energy range close to the Dirac point where the relative
wave number k is small, the massive Dirac equation can be
approximated by the Schrödinger equation. When this hap-
pens, a circular sector quantum billiard, regardless of the
angle, becomes integrable with the Poisson spectral statis-
tics. Summarizing it, the transition in the spectral statistics
uncovered in this work will be valid insofar as there is a
ferromagnetic-to-antiferromagnetic transition which has been
revealed in previous works [25,67,68,78,79]. Our finding thus
is not an artifact of the mean-field model but a robust physical
phenomenon.

Another issue concerns the possible role of many-body
localization (MBL) in the spectral statistics transitions. MBL,
a many-body phenomenon in quantum systems, hinders the
system from reaching a thermal equilibrium [80]. Previous
works on spin-chain models revealed that MBL can lead
to Poisson statistics for the energy spectrum [81,82], which
is consistent with the results on graphene billiards where
the localization of quantum states can generate Poisson-like
spectral statistics [33,36,83] due to the breaking of the cor-
relation between the states [31]. (Spectral correlation due to,
e.g., chaotic dynamics, generally results in GOE-like spectral
statistics [28–30].) However, we found that the trend toward
Poisson for large U in this work is not caused by any localized
states but due to the transition from massless to massive Dirac
quasiparticles rendered by the opening of an energy gap. We
have calculated the participation ratio that characterizes the
degree of localization of the eigenstates [84] and found no
systematic change in this ratio associated with the transition
across Uc, even in the large U regime toward the Poisson
statistics.

Finally, it was conjectured that, for systems under a metal-
insulator phase transition, the spectral statistics should follow
semi-Poisson close to the transition point [75,85]. In our
study, semi-Poisson statistics can also arise when the Hubbard
interaction strength falls in an appropriate interval (i.e., U ∼ t
to 1.5t), but the statistics are not related to the critical states.
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APPENDIX: SPECTRAL PROPERTIES OF ADDITIONAL
CIRCULAR SECTOR GRAPHENE BILLIARDS

To further demonstrate that the energy levels above and
below the Dirac point can follow distinct spectral statistics
as observed from the 15◦ZM billiard at U = 3t , we examine
several additional sector billiards with different angles and
boundaries. As shown in Fig. 12, the �2(L) statistics of the
45◦ZM billiard is most close to that of the 15◦ZM billiard
treated in the main text, while the �2(L) statistics of the
45◦AM billiard is close to that of the 60◦AA billiard. These
results are consistent with the analysis in the main text.
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