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The role of classical dynamics in spin transport is an intriguing problem from the point of view of
classical-quantum correspondence, as spin is a purely relativistic quantum mechanical variable with no classical
counterpart. Nevertheless, due to spin-orbit coupling (generally referred to as the relativistic interaction of
a particle’s spin with its motion inside a potential) and because the orbital motion does have a classical
correspondence, the nature of the classical dynamics can affect spin. A basic transport structure is quantum
dots, whose geometrical shape can be chosen to lead to characteristically distinct classical behaviors ranging
from integrable dynamics to chaos. Whether and how classical chaos can affect spin transport and if the effect
can be exploited for applications in spintronics are thus issues of both fundamental and practical interest. Here
we report results from systematic, full quantum computations of spin transport through quantum dots hosting
different types of classical dynamics. Our main finding is that chaos can play orthogonal roles in affecting
spin polarization, depending on the relative strength of the spin-orbit coupling. For weak coupling with a
characteristic interaction length much larger than the system size, chaos can be beneficial to preserving spin
polarization. In the strong coupling regime where the interaction length is smaller than the system dimension,
chaos typically destroys spin polarization. We develop a semiclassical theory to understand these phenomena
and point out their implications and potential applications in developing spintronic devices.
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I. INTRODUCTION

Spin transport, the spin-dependent electron transport in
mesoscopic systems, is fundamental to condensed matter
physics [1–3] and the development of energy efficient elec-
tronics [1,2] such as spintronics. Advances in experimental
techniques [4,5] have made it possible to uncover, understand,
and exploit a variety of phenomena related to spin transport.
In terms of basic physics, how to generate polarized spin
currents from unpolarized electron injections, i.e., spin rec-
tification [6], and how to preserve spin polarization during
electronic transport [1] are issues of current interest [3,7]. The
main point of this paper is that, under certain circumstances,
classical chaos can either help to preserve or destroy spin
polarization.

Spin transport represents a subclass of phenomena in the
broad context of electronic transport [8], a field that has been
relatively well developed. To explain the motivation behind
our work, we briefly describe the pertinent problem of the
interplay between classical dynamics and quantum transport.
When electrons traverse a nanostructure, e.g., a quantum dot,
universal conductance fluctuations can arise [9–14]. If the
underlying classical dynamics are integrable or mixed in the
sense that there are both Kolmogorov-Arnold-Moser (KAM)
tori and chaotic components in the phase space [15], sharp,
Fano-type of resonances in the conductance curve of interest
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(e.g., conductance versus the Fermi energy or the strength of
an external magnetic field) can arise, but the resonances are
smoothed out when the classical dynamics are fully chaotic
[13,16–22]. The ability for classical chaos to suppress or even
eliminate resonances has led to the proposal of the control
scheme to mitigate conductance fluctuations through chaos
[23,24]. For electronic or charge transport, it seems quite
natural to investigate the interplay between classical dynamics
and quantum characteristics as, in this context, a classical-
quantum correspondence exists.

Spin is a relativistic quantum characteristic with no clas-
sical counterpart. Intuitively, there is no direct classical cor-
respondence to spin transport. A question is then: is it mean-
ingful to study the interplay between classical dynamics and
spin transport? The answer is affirmative, thanks to Rashba
spin-orbit coupling [25–31]—a relativistic type of interaction
of a particle’s spin with its orbital motion inside a potential.
Because the orbital motion in general has a classical corre-
spondence, the nature of the classical dynamics can affect spin
transport.

Depending on whether the injected electrons are spin un-
polarized or polarized, chaos can have a characteristically
distinct effect on spin polarization. To explain these results,
we consider a two dimensional system. In particular, for
unpolarized injection, if the system is invariant under the
symmetric operation r ↔ −r , where r is the position vector
in the (x, y) plane, the z-component of spin polarization must
be zero [32]. From the semiclassical point of view, if ini-
tially electrons are spin-unpolarized, the precession caused by
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spin-orbit coupling of an electron with spin P is opposite to
that of an electron with spin −P . As a result, at any time the
spins of the two electrons are in exactly opposite directions
and thus cancel each other completely, giving rise to zero
total spin polarization. Quantum mechanically, there can be
residuals of the x or y component of spin polarization. In
this case, classical chaos or edge roughness of the underlying
quantum confinement structure can reduce the cancellation of
the spin of the pair of electrons with initial opposite spins,
leading to an enhancement in the residual polarization [33,34].

For spin polarized injection, a related phenomenon is that,
classical chaos can preserve the polarization [35]. In partic-
ular, in Ref. [35], the authors investigated spin relaxation in
two-dimensional electron systems with an antidot structure
through Monte Carlo simulations in the semiclassical regime,
in which the electron motion can be mapped to that in a
closed quantum confinement with the geometry of a chaotic
billiard with the degree of chaos determined by the geometric
parameters. It was found that chaos can suppress the relax-
ation of spin polarization by increasing the relaxation time or,
for a given relaxation time, strengthening the amount of spin
polarization. However, there are circumstances under which
chaos can play the opposite role to suppress spin polarization.
For example, path-integral based simulations of spin evolution
controlled by Rashba spin-orbit interaction in the semiclas-
sical regime for chaotic and integrable (circular) quantum
confinements revealed [36] that chaos can make the spin
polarization approach zero. However, classically integrable
dynamics can lead to a constant, nonzero residual polarization
value—a result confirmed by a full quantum analysis.

Most previous works focused on closed systems in the
semiclassical regime [35,36]. The purpose of this paper is
to carry out full quantum computations and analysis of spin
transport in open quantum dot systems. Our focus is on
spin polarized injection and the effect of classical chaos on
quantum spin transport in 2D mesoscale quantum dots. To be
comprehensive, we consider four types of quantum dots that
exhibit different degree of chaos in the classical limit. In each
case, polarized spin current is injected into the left side of
the dot. We use the spin-resolved Usuki recursive scattering
matrix method [37–39] to calculate and analyze the transport
through the dot region with Rashba spin-orbit coupling. The
calculation gives the degree of spin polarization at the right
side and the spin-resolved Fano factor of shot noise. As the
system changes from being integrable to mixed and becomes
fully chaotic in the classical limit, the Fano factor increases
systematically, indicating a stronger degree of mixing of
different transmitting channels. For spin polarization, there
are two distinct cases: the characteristic spin-orbit interaction
length is much larger than or comparable/smaller than the
device size, corresponding to the weak or strong coupling
regime, respectively. In the weak coupling regime, chaos is
beneficial to preserving spin polarization, but in the strong
coupling regime, chaos will diminish spin polarization.
We provide a physical understanding of these phenomena
through analyzing the semiclassical spin precession along
the classical orbits. In particular, the generic difference
between an integrable/mixed and a chaotic system is that
the former has stable periodic orbits while for the latter, all
periodic orbits are unstable and are scattered in phase space,

FIG. 1. Schematic illustration of spin transport in two dimen-
sions. The Rashba spin-orbit coupling (SOC) is induced by an
external electrical field ERashba in the SOC region.

so that the direction of spin polarization vector can change
in a random manner. In the weak coupling regime, for an
integrable or mixed system, a trajectory reflects from the
boundary in a regular way, so spin polarization tends to be
weakened systematically. For a chaotic system, while the
spin polarization vector changes randomly, the amplitude of
the change is small, mimicking a small step random walk.
On average, after many reflections (walks), spin polarization
can be preserved. In the strong coupling regime, for an
integrable/mixed system, spin polarization tends to vary in
a regular manner: it decreases to zero and then increases in
the opposite direction, and so on. For a chaotic system, as
the magnitude of the change in spin polarization vector is
larger, the randomness in the rotating axis deteriorates the
vector quickly, especially when there are multi-transmitting
channels, leading to destruction of spin polarization.

In Sec. II, we describe the device model and provide
formulas for quantities such as spin-resolved transmission,
spin-polarization vector, and the Fano factor characterizing
the shot noise of the system. In Sec. III, we present results on
the effect of chaos on spin transport. In Sec. IV, we provide
a semiclassical explanation of the main results based on
examining and comparing the structure of the Poincaré section
of the classical trajectories for different types of classical
dynamics. A discussion is presented in Sec. V.

II. SPIN TRANSPORT IN TWO DIMENSIONS

Figure 1 illustrates a general two-terminal spin transport
system, which consists of a left lead, a Rashba spin-orbit
coupling region (or cavity), and a right lead. The Rashba spin-
orbit interaction is induced by an external electric field ERashba

in the cavity region. The electron in the cavity is confined
by an electric potential that is infinite outside but vanishes
inside the cavity and the lead region. The boundary of the
cavity can be chosen to generate integrable, mixed, or chaotic
dynamics in the classical limit. Polarized electrons with spin
polarization P inject = (0, 0, 1) are injected from the left lead
into the cavity [40,41]. They undergo scattering inside the cav-
ity and finally exit from the right lead with spin polarization
Pdetect = (Px, Py, Pz). In general, both Rashba interaction
and the geometrical shape of the cavity can affect the electron
motion, with the corresponding Hamiltonian given by

Ĥ = p̂2

2m∗ σ0 + α

h̄
· (σ̂ × p̂), (1)
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where σ0 is the 2 × 2 unit matrix, σ̂ = (σx, σy ) are the
Pauli matrices, m∗ is the electron’s effective mass inside
the cavity, α = [h̄/(2m∗c)2]∇U = −[h̄/(2m∗c)2]ERashba

characterizes the strength of Rashba spin-orbit coupling,
which can be obtained [42] by expanding the Dirac equation
in terms of v/c. For a given Fermi energy, the wavefunction
inside the ideal leads attached to both sides of the cavity can
be expressed as a linear combination of the spin-polarized
conducting channels |nσ 〉 = |n〉 ⊗ |σ 〉, with n and σ being
the channel and spin indices, respectively. For an incoming
state with certain channel and spin indices, the outgoing state
can be expanded by |nσ 〉 of the right lead, i.e.,

|in〉 = |n〉 ⊗ |σ 〉, (2)

|out〉 =
∑
n′,σ ′

tn′n,σ ′σ |n′〉 ⊗ |σ ′〉. (3)

The square modulus of the expansion coefficients tn′n,σ ′σ
gives the probability for a spin-σ incoming channel |n〉 from
the left lead to scatter into a spin-σ ′ channel |n′〉 state in
the right lead. We denote tσ ′σ as the scattering matrix of all
orbital channels from the spin-σ state in the left lead to the
spin-σ ′ state in the right lead, whose dimension is determined
by the total number of the conducting channels. In particular,
tσ ′σ can be calculated from the Green’s function formalism
[40,41].

We focus on calculating the physical quantities that are
important to characterizing spin transport, such as the spin-
resolved transmission coefficient T σ ′σ , the spin polarization
vector Pσ , and the spin-resolved shot noise characterized by
the Fano factor F . For simplicity, throughout the work we
assume polarized injection with σ =↑ at the contact with the
left lead. Omitting the index σ and writing Pσ as P would
thus lead to no confusion.

Spin-resolved transmission. With the outgoing state
Eq. (3), we obtain the spin-resolved transmission coefficients
as

T σ ′σ = Tr(tσ ′σ t†σ ′σ ), σ, σ ′ = ↑,↓, (4)

which describes the transmission of the spin-σ incoming wave
through the cavity and being detected as the spin-σ ′ wave
in the right lead. At low temperature, the spin-resolved con-
ductance can be obtained via the Landauer-Büttiker formula
[8]: Gσ ′σ = (2e2/h)T σ ′σ . The total transmission is the sum
of transmission for both spins, i.e., T = ∑

σ ′ T σ ′σ .
Spin polarization vector. The spin polarization vector is

defined as [40,41,43] the average of the Pauli operator P =
〈σ̂ 〉. It is necessary to normalize the outgoing state with the
normalization constant√∑

σ ′
Tr(tσ ′σ t†σ ′σ ) =

√
Tr(t↑σ t†↑σ ) + Tr(t↓σ t†↓σ ).

We have

|out〉 =
∑
n′,σ ′

tn′n,σ ′σ√∑
σ ′ Tr(tσ ′σ t†σ ′σ )

|n′〉 ⊗ |σ ′〉. (5)

The spin polarization vector taking into account all injecting
channels is given by [40]

P =
∑

n

〈out|σ̂ |out〉 =
∑

σ ′σ ′′ Tr(tσ ′σ t†σ ′′σ )〈σ ′|σ̂ |σ ′′〉
Tr(t↑σ t†↑σ ) + Tr(t↓σ t†↓σ )

. (6)

This result has the same form as that in Ref. [40], which was
obtained through the spin density matrix. Note that |P | = 1
indicates a pure state, while |P | < 1 specifies a mixed state as
a result of loss of spin coherence into the environment.

Since the spin for the incoming state is assumed to be σ =
↑, the three components of P can be obtained from Eq. (6) as

Px = 2 Re[Tr(t↓↑ t†↑↑)]

Tr(t↑↑ t†↑↑) + Tr(t↓↑ t†↓↑)
, (7a)

Py = 2 Im[Tr(t↓↑ t†↑↑)]

Tr(t↑↑ t†↑↑) + Tr(t↓↑ t†↓↑)
, (7b)

Pz = Tr(t↑↑ t†↑↑) − Tr(t↓↑ t†↓↑)

Tr(t↑↑ t†↑↑) + Tr(t↓↑ t†↓↑)
. (7c)

For the incoming wave, we have Pz = 1. Our goal is to assess
the value of Pz after scattering from the cavity.

Spin-resolved shot noise. Quantum transmission is related
with the current through the system. The shot noise character-
izes the current’s fluctuation-correlation function, which can
be an indicator of the randomness of the system [45–48] and
can be measured in experiments with apparatus as described
in Ref. [48]. At low temperatures and on the mesoscopic
scale, the electron’s mean free path can be larger than the
system size, making the conductor phase coherent. The origin
and the meaning of shot noise for phase-coherent transport
system has been explained in Refs. [45–48]. Specifically, in
general, the quantum states are occupied by particles in a
probabilistic sense as characterized, e.g., by the transmission
probability (coefficient) from the incoming to the outgoing
channels [49]. Shot noise originates from the fluctuations of
the particles. When spin is not taken into consideration, the
scattering theory of quantum transport can be used to obtain
[45–48] the following formula for the shot noise power in
terms of the transmission eigenvalues:

S = 4e3V

h

∑
n

Tn(1 − Tn),

where Tn are the eigenvalues of the transmission matrix tt†

and V is the applied voltage in the longitudinal (transport)
direction. When spin is taken into account, shot noise for
spin-resolved transport process can be obtained [41] similar to
that of the spin polarization vector for the setup σ =↑. More
specifically, the four components of shot noise are

S↑↑ = 2e3V

h
[Tr(t↑↑ t†↑↑) + Tr(t↑↑ t†↑↑ t↑↑ t†↑↑)], (8a)

S↓↓ = 2e3V

h
[Tr(t↓↑ t†↓↑) + Tr(t↓↑ t†↓↑ t↓↑ t†↓↑)], (8b)

S↑↓ = −2e3V

h
Tr(t↓↑ t†↑↑ t↑↑ t†↓↑), (8c)

S↓↑ = −2e3V

h
Tr(t↑↑ t†↓↑ t↓↑ t†↑↑). (8d)
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FIG. 2. Four cavities investigated in this paper and their spin polarization. [(a)–(d)] Cavities I to IV in the order of an increasing degree of
classical chaos, respectively. All structures have the same width of 0.24 μm and, for a given Fermi energy, the leads permit the same number
of transmitting modes. (a) A ribbon with integrable classical dynamics, where the length of the SOC region is 1 μm. (b) A cosine billiard
with mixed dynamics of length L = 1.33 μm. The upper boundary is given by [21] y = W + (M/2)[1 − cos (2πx/L)] with M/L = 0.11 and
W/L = 0.18. (c) A cosine billiard with chaotic dynamics for L = 0.67 μm, M/L = 0.22, and W/L = 0.36. (d) A chaotic cavity [44] with
its upper boundary being made up of an arc of radius R = 0.38 μm and another arc of radius r = 0.2 μm. The lower boundary is a section
of arc of radius r = 0.2 μm. The length of the cavity is 1 μm. [(e)–(h)] Contour plots of Pz in the parameter plane of Fermi energy Ef and
SOC strength tso (both in units of t0, the hopping energy between neighboring lattice sites). The triangles mark the positions of the tso such that
Lso = π/(2tso ) = ∞, 4L, L, L/2, which are investigated further in Fig. 3.

The spin-resolved current induced by the incoming spin up
electrons is [41]

I σ = 2e2V

h
Tr(tσ↑ t†σ↑), σ =↑,↓ . (9)

The Fano factor, by its definition F = S/(2eI ), can also be
obtained in a spin-resolved manner as

F ↑→↑ = S↑↑

2eI↑ , (10a)

F ↑→↓ = S↓↓

2eI↓ , (10b)

F ↑→↑↓ = S

2eI
, (10c)

where I = I↑ + I↓, and S = S↑↑ + S↑↓ + S↓↑ + S↓↓. For
convenience, we denote F ↑→↑↓ as F . The value of the Fano
factor lies in the range [0, 1] [41], where a larger value of F

indicates a stronger degree of randomness in channel mixing
[49–51]. For completely stochastic motion, we have F = 1,
and the corresponding shot noise of this case is Poisson
[46,47]. For F → 0, the electron motions are deterministic
[48–53]. In general, the value of the Fano factor is an indicator
of the quantum randomness in the current that coincides with
the degree of classical chaos of the system [49–51].

III. RESULTS

We employ the Usuki recursive scattering matrix technique
[37] to calculate the three characterizing quantities described
in Sec. II. The characteristic length scale associated with
spin transport is the distance required for spin to flip in the
semiclassical regime, which is the so-called spin-orbit length

[40,41,54] defined as

Lso = πh̄2/(2m∗α) = πat0/(2tso),

where a is the lattice constant and t0 = h̄2/(2m∗a2) is the
hopping energy between two neighboring sites. In the units
of a = h̄ = 2m∗ = 1, we have t0 = 1, so Lso = π/(2tso).

Figures 2(a)–2(d) show the four cavities that we study,
which are denoted as cavities I–IV, respectively. The classical
dynamics for cavity I and II are integrable and mixed, respec-
tively, while those of cavities III and IV are fully chaotic. It
has been noted that with spin-orbit interactions only circular
billiard is integrable [55,56], but in our case, integrable or
chaos are referred to the corresponding classical dynamics
only. Since it is assumed that the orbital motion is not af-
fected by spin, the orbital motion is purely determined by the
classical trajectories [33–36], and the cavity shape determines
the classical integrability of the system. For the purpose of
comparison, the leads attached to the cavities in all cases
have the same width so that, for a given energy, there are an
equal number of transmitting modes in the lead. Figures 2(e)–
2(h) present the contour plots of spin polarization Pz in the
parameter plane of Fermi energy Ef and spin-orbit coupling
strength tso, for the cavities in Figs. 2(a)–2(d), respectively.
For relatively small values of tso, Pz varies periodically with
tso. However, as the value of tso becomes larger, the periodic
behavior disappears due to the phenomenon of spin subband
mixing [57]. Our computations reveal that transmission and
shot noise exhibit a similar pattern as the value of tso is
increased from zero, which has also been observed in previous
works [57,58]. We note that, as the classical dynamics become
increasingly chaotic [Fig. 2(e) to Fig. 2(h), the periodic pattern
of Pz versus tso becomes progressively degraded. Another
feature is that, as Ef is increased, Pz exhibits vertical line
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FIG. 3. Characterization of spin transport through the four different types of cavities. Total transmission T = T ↑↑ + T ↓↑ (upper row),
charge Fano factor F ≡ F ↑→↑↓ [Eq. (10c)] for the total spin-resolved current (middle row), and the spin polarization Pz (bottom row) vs the
normalized Fermi energy. The four columns from left to right correspond to Lso = ∞, 4L, L, L/2, respectively. The notions I–IV indicate
the four cavities in Fig. 2. For F and Pz, a sliding window average is used with the window size � = 0.0464t0. For Ef − 0.016t0 < �/2, the
average is over the interval [0.016t0, 2Ef − 0.016t0].

patterns, which can be seen clearly from Fig. 2(e). This is due
to the abrupt changes in the number of transmitting modes as
Ef is increased, i.e., from one to two, to three, and to four.
There are many more vertical lines in (f) due to the localized
states about the stable periodic orbits in cavity II with mixed
dynamics in the classical limit. The nearly vertical curves in
Figs. 2(g) and 2(h) are also due to the localized states but,
because of the absence of stable periodic orbits in a chaotic
cavity, these states are much weaker than those in the mixed
cavity, resulting in much smoother variations of Pz with Ef .

It is insightful to examine the details of the dependence
of the total transmission, the Fano factor of the total current,
and the spin polarization Pz on the Fermi energy Ef for
some specific values of tso, as marked by the four triangles
in each of Figs. 2(e)–2(h), corresponding to Lso = π/(2tso) =
∞, 4L, L, L/2, where there is absence of spin precession,
π/4 precession for the ribbon, up to down spin flip, up to down
and then back to up spin flip, respectively. The results for the
four cases are shown in Fig. 3.

For the ribbon, the total transmission is a step function
versus the Fermi energy, corresponding to the number of
allowed transmitting modes, where the first transmitting mode
emerges at the Fermi energy 0.016t0, below which there are
no transmitting modes and the total transmission is zero. As
the spin-orbit coupling becomes stronger [Figs. 3(c) and 3(d)],
the total transmission exhibits small oscillations after jumps,
which is similar to what happens when a magnetic field is
present. As the cavity becomes increasingly chaotic in the
classical limit (from I to IV), random scattering becomes more
severe, leading to degraded transmission. The four curves for
the transmission in Figs. 3(a)–3(d) from top to down are for
cavities I to IV, respectively. For mixed classical dynamics
(cavity II), due to the recurrence of the strongly localized
states about the stable periodic orbits, the transmission ex-
hibits repeated oscillations as Ef is varied. For the chaotic
cavities (III and IV), the transmission becomes irregular.

Figures 3(e)–3(h) show that, as the cavity becomes more
chaotic, the Fano factor of the total current takes on larger
values, indicating a stronger degree of randomness associated
with channel mixing of the current [51,53]. The Fano fac-
tor is thus a quantity capable of revealing faithful quantum
manifestations of classical chaos [49–53]. We find that these
results are insensitive to the specific values of tso or Lso, as the
qualitative behaviors are essentially the same for different tso

values.
Figures 3(i)–3(l) show the spin polarization Pz versus the

Fermi energy. For Lso = ∞ or tso = 0 [Fig. 3(i)], there is
no change in spin, leading to Pz = 1 (independent of the
Fermi energy) for all cavities. For Lso = 4L [Fig. 3(j)], Pz

decreases slightly. From the magnifying inset, we see a more
dramatic decrease in the value of Pz for the ribbon than that
for the chaotic cavities, indicating that classical chaos helps
to preserve the spin polarization. As the spin-orbit coupling is
strengthened further, e.g., for Lso = L [Fig. 3(k)], spin flips
begin to occur. For the ribbon, Pz can reach the value of −1.
However, as the cavity becomes more chaotic, Pz approaches
zero, demonstrating the destructive effects of chaos on spin
polarization. For Lso = L/2 [Fig. 3(l)], spin flips to the up
state again, i.e., Pz > 0. In this case, Pz exhibits a decreasing
trend from ribbon to mixed and then to chaotic cavities, signi-
fying again the destructive role of chaos in spin polarization.

To characterize the effects of chaos on spin polarization
more quantitatively, we average Pz in the energy range with
certain number of transmitting modes. Figures 4(a)–4(d) show
the average spin polarization 〈Pz〉Ef

versus tso for the energy
range with one to four transmitting modes, respectively. In all
panels, 〈Pz〉Ef

oscillates periodically with tso but with a de-
creasing amplitude, which can be attributed to channel mixing
in the regime of strong spin-orbit coupling. Figures 4(a)–4(d)
reveal two distinct regimes of tso: tso/t̃so � 1/2 (Lso � 2L)
and tso/t̃so � 1 (Lso � L). For tso/t̃so < 1/2, 〈Pz〉Ef

decreases
from unity and the fastest decay occurs for the ribbon (cavity
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FIG. 4. Averaged spin polarization over the Fermi energy
vs the spin-orbit coupling strength. [(a)–(d)] Averaged polar-
ization 〈Pz〉Ef

versus tso for four different ranges of en-
ergy averaging: [0.016, 0.0624], [0.0632, 0.140], [0.1408, 0.2472],
[0.248, 0.3816], respectively, corresponding to one to four transmis-
sion modes. The spin-orbit coupling strength tso is normalized by t̃so,
the strength value that flips the electron spin from up to down as it
travels from the left to the right lead through the cavity. The t̃so values
are marked by the third triangles (red) from the bottom in Fig. 2 for
different cavities.

I). As the cavity becomes increasingly chaotic, the decay
of 〈Pz〉Ef

becomes slower, and the slowest decay occurs
for cavity IV. For tso/t̃so = 1/2, we have 〈Pz〉Ef

= 0 for the
ribbon, while the value of 〈Pz〉Ef

is still finite for the chaotic
cavities. We can conclude that, in this regime (e.g., Lso = 4L

or tso/t̃so = 1/4 as in Fig. 3), chaos is beneficial to preserving
spin polarization. Beyond this regime, the value of 〈Pz〉Ef

gets
close to −1 for the ribbon as tso/t̃so approaches one (the case
Lso = L). For the other cavities, although 〈Pz〉Ef

attains a
minimum value, the value of |〈Pz〉Ef

| is typically smaller than
one and closer to zero for a more chaotic cavity. For example,
for cavity IV, the value of 〈Pz〉Ef

approaches the value of
approximately −0.5. In these cases, chaos is detrimental to

spin polarization. This feature persists for tso/t̃so � 1, e.g.,
Lso = L/2 (corresponding to tso/t̃so = 2) in Fig. 3.

IV. SEMICLASSICAL THEORY

Our full quantum computations have revealed that, for
polarized injection, depending on the relative scale of the
characteristic spin-orbit interaction length, classical chaos can
either preserve or destroy quantum spin polarization. Here we
present a semiclassical theory to explain these results. The
starting point is to rewrite the Hamiltonian in (1) as [1,59]

Ĥ = p̂2

2m∗ σ0 + h̄

2
σ̂ · �̂, (11)

where �̂ = −(2/h̄2)α × p̂. The Hamiltonian is valid for elec-
tron inside the cavity, subject to Rashba spin-orbit interaction.
The equation of time evolution of the spin polarization vector
P = 〈σ̂ 〉 is given by [1,59]

d

dt
〈σ̂ 〉 = 1

ih̄
〈[σ̂ , Ĥ]〉 = 〈�̂ × σ̂ 〉. (12)

For this system, the two observables { p̂, σ̂ } form a com-
plete set of variables. The quantum state |ψ〉 of the system
can then be chosen as the eigenstate of both p̂ and σ̂ . We
thus have 〈 p̂〉 = p, 〈�̂〉 = � = −(2/h̄2)α × p and 〈σ̂ 〉 = P .
With these expressions, Eq. (12) can be further simplified as
[1,59]

d

dt
P = � × P, (13)

which describes the rotational motion of the polarization
vector P about �, with |�| being the angular velocity of P .

Semiclassically, an electron moves freely in the cavity and
reflects at the boundary, so the trajectory consists of straight
line segments. For each segment, � is a constant, for which
Eq. (13) can be solved analytically. In particular, let P and
P ′ be the polarization vectors at the beginning and end of a
straight trajectory segment, respectively. The two vectors are
connected through a rotation matrix as

P ′ = R(γ, ϕ)P, (14)

where the matrix is given by

R(γ, ϕ) =
⎛
⎝ cos ϕ + (1 − cos ϕ) sin2 γ − sin γ cos γ (1 − cos ϕ) − cos γ sin ϕ

− sin γ cos γ (1 − cos ϕ) cos ϕ + (1 − cos ϕ) cos2 γ − sin γ sin ϕ

cos γ sin ϕ sin γ sin ϕ cos ϕ

⎞
⎠.

Here, ϕ is the rotated angle. The axis of rotation is
determined by γ : for momentum p = p(cos γ, sin γ, 0),
we have � = −(2/h̄2)α × p = [(2αp)/h̄2]n, where α =
−[h̄/(2m∗c)2]ERashba is the Rashba spin-orbit coupling
strength pointing to the z direction, n is a unit vector perpen-
dicular to the plane spanned by α and p, thus the rotation axis
is given by n = (sin γ,− cos γ, 0). Since

dϕ = �dt = −2m∗

h̄2 α × d r, (15)

and because α is a constant, d r is along the line segment.
We thus have ϕ = (2m∗α/h̄2)s, where s is the distance that
the electron travels through [60]. For s = Lso, we have ϕ =
π . After n reflections at the boundary, the final polarization
vector is related to the initial one by Pf = Rn · · · · · R1 · P i .

For different types of classical dynamics, the trajecto-
ries can be characteristically distinct. For example, for the
ribbon, the trajectory segments have two directions only
and the trajectory takes these directions alternatively during
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FIG. 5. Spin polarization and evolution of polarization vector
for the integrable cavity. For the ribbon (cavity I), (a) Pz vs x, for
spin-orbit coupling strength Lso = L. Symbols are numerical results
from Eq. (14), while the light blue oscillatory curve is from theory
[Eq. (16)]. (b) A trajectory of the spin polarization vector in the P
space, where up and down triangles are for reflections from the upper
and lower boundary, respectively.

evolution: γ0, −γ0, γ0, . . ., where γ0 is the initial angle with
respect to x axis. The rotated angle for each line segment
is ϕ0 = 2m∗αM/[h̄2 sin (γ0)]. Denoting R0 = R(γ0, ϕ0) and
R1 = R(−γ0, ϕ0), we have Pf = · · · · R1 · R0 · R1 · R0 ·
P i . We thus have the following approximate expressions
for the spin polarization vector as it propagates along the x

axis:

Px (x) =−cos

(
πM

2Lso

)
sin

[
(1 + ω1)

π

Lso
x

]
, (16a)

Py (x) =−sin

(
πM

2Lso

)
cos

(
πM

2Lso

){
1−cos

[
(1+ω1)

π

Lso
x

]

× cos

[
(1 + ω2)

π

M cot γ
x

]}
, (16b)

Pz(x) = cos2

(
πM

2Lso

)
cos

[
(1 + ω1)

π

Lso
x

]
+ sin2

(
πM

2Lso

)

× cos

[
(1 + ω2)

π

M cot γ
x

]
. (16c)

where the values of ω1 and ω2 depend on the parame-
ters of the system. Figures 5(a) and 5(b) show, for ω1 =
−2.065M cot γ0/L, and ω2 = −0.001ω1, Pz versus x and the
evolution of the whole spin polarization vector, respectively.
The initial spin polarization is P i = [0, 0, 1]T . The symbols
are the numerically calculated values of spin polarization
from Eq. (14), while the curves represent the theoretical
prediction from Eq. (16). There is good agreement between
theory and numerics. Different choices of the parameters M

and L will lead to different values of ω1 and ω2, but Eq. (16)
still holds.

For mixed or chaotic classical dynamics, due to the vari-
ations of the rotating axis and angle, analytic expressions
similar to Eq. (16) cannot be obtained. Nevertheless, it is fea-
sible to calculate the classical phase space and examine how
a typical trajectory behaves. In particular, we can trace the
trajectory and calculate the corresponding spin polarization

FIG. 6. Spin polarization and evolution of polarization vector for
cavities with mixed and chaotic dynamics. [(a) and (d)] Phase space
trajectories, i.e., the reflection angle versus the position of reflection
at the lower boundary, for the cosine cavity with mixed (cavity
II) and chaotic dynamics (cavity III), respectively. Only trajectories
starting from the left lead are considered. The crosses are for a typical
trajectory [61]. A dominant KAM island at (x, θ ) = (0.5, π/2) is
present in (a). [(b) and (e)] Pz vs x for the trajectories shown in
[(a) and (d)], respectively. The spin-orbit coupling strength is such
that Lso = 4L. (c,f) Pz versus x for the same trajectories but with
Lso = L. The two curves in (c) are the envelope lines similar to that
in Fig. 5(a). Up and down triangles are for trajectory’s reflecting from
the upper and lower boundary, respectively. The two solid red right
triangles mark the values of the incoming and outgoing Pz at x = 0
and x = L, respectively.

vector to gain insights into their relation, so as to assess the
influence of the classical dynamics on the evolution of the spin
polarization vector in terms of the distinct behaviors of the
trajectories. Representative results are shown in Fig. 6. The
left column is for the mixed case (cavity II), where a dominant
KAM island is apparent in the phase space [Fig. 6(a)]. A
typical trajectory is located around the KAM island, i.e., the
trajectory stays close to the periodic orbit for a substantially
long time due to the stickiness effect of the KAM island
[62–66]. As a result, the reflection angle and the segment
length between two successive reflections vary in an ordered
manner, similar to the behaviors in an integrable cavity. Since
the reflection angle and the segment length are uniquely
determined by the axis angle γ and the angle of rotation ϕ
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in Eq. (14), the corresponding spin polarization Pz varies in
a way similar to that for the ribbon, as shown in Figs. 6(b)
and 6(c), in spite of the many bounces back and forth in the
x direction. For the chaotic cavity (III), there are no KAM
tori and the phase space is filled with chaotic sea, as shown in
Fig. 6(d). A typical trajectory bounces randomly with large
variations in the reflection angle and the segment length,
leading to drastic changes in the rotating axis.

For weak spin-orbit coupling, e.g., Lso = 4L, the rotating
angle ϕ is small. For the chaotic case, due to the stochastic
variations in the rotating axis angle γ , the evolution of the
spin polarization vector mimics a random walk about its
starting point, leading to an appreciable value of Pz higher
than the values for the integrable or mixed cavities, as shown
in Figs. 6(b) and 6(e). For strong spin-orbit coupling, e.g.,
Lso = L, after the electron passes through the Rashba re-
gion, the value of Pz is close to −1 for the integrable and
mixed cavities [Figs. 5(a) and 6(c), respectively]. However,
for the chaotic cavity, Pz varies drastically, as shown in
Fig. 6(f), leading to a deteriorated output spin polarization on
average.

V. DISCUSSION AND CONCLUSION

Fundamentally, spin is a relativistic quantum degree of
freedom, for which a classical correspondence does not ex-
ist. Nonetheless, spin-orbit interactions provide an avenue
through which classical dynamics are able to manifest them-
selves in the characteristics and evolution of spin. In particu-
lar, for billiards with Rashba spin-orbit interactions, previous
works have investigated conductance fluctuations [67,68],
statistical properties of wave functions [69,70], the effects to
weak localization and weak antilocalization [71], and other
characteristics in the general context of quantum chaos [72–
74]. In a general sense, to study the effects of distinct types
of classical dynamics including chaos on spin belongs to the
field of relativistic quantum chaos [75,76]. Concerning only
the impact of classical chaos on spin behaviors, there have
been previous works on closed systems but with seemingly
contradicting conclusions: situations were identified where
chaos preserves or enhances spin polarization [35], but there
are also circumstances under which chaos plays the opposite
role of deteriorating the polarization [36].

In this paper, we present results from a systematic study of
the effects of classical chaos on spin transport. We focus on
spin transport in 2D quantum dot systems with Rashba spin-
orbit interaction and investigate systematically the effects of
classically integrable, mixed, and chaotic dynamics on spin
polarization. For a given dot structure with a specific class of
classical dynamics, we assume that spin polarized electrons
are injected into the system and carry out full quantum compu-
tations to obtain an exact picture of how the spin polarization
evolves during the transport through the dot. To gain insights,
we also develop a semiclassical theory to obtain a physical
understanding of the phenomena revealed by the quantum
calculations. This should be contrast to previous works that
were based mainly on the semiclassical approach [35,36].
We find that classical chaos has a clear signature in the
Fano factor for spin-resolved quantum transport. Strikingly,
in the weak spin-orbit coupling regime where the character-

istic interaction length is relatively large, classical chaos is
beneficial to preserving spin polarization, but in the strong
coupling regime, chaos can suppress or even destroy the
polarization.

Conceptually, in the weak coupling regime, the dynamics
of spin polarization are described by those of a damped oscil-
lator. For classically integrable dynamics, the oscillations are
regular with small damping effects. As the classical dynamics
become increasingly chaotic, damping becomes significant.
For any oscillation period, in the first quarter, spin polarization
for the integrable dot decreases rapidly to zero, while that
for the chaotic system decreases much more slowly, giving
rise to the counterintuitive phenomenon of chaos-assisted spin
polarization preservation. In the strong spin-orbit coupling
regime with characteristic length smaller than the size of the
interacting region, chaos is detrimental to spin polarization.
An implication is that, for a given strength of spin-orbit
interaction, chaos in a relatively small quantum dot system
can preserve spin polarization, but the opposite occurs in a
larger system.

Our computations and analysis provide a natural under-
standing of the seemingly contradicting results reported pre-
viously in the literature. For example, in Ref. [35], the pa-
rameters are such that the characteristic spin-orbit length is
much larger than the scale of the quantum dot (antidot).
Semiclassically, the angle of spin rotation per scattering event
or collision is small. From the point of view of ensemble
average, chaos can suppress the overall spin drift and help
maintain the spin polarization. The phenomenon reported in
Ref. [36] has a similar origin. However, when the character-
istic spin-orbit length is comparable to or even smaller than
the system size, spin polarization depends primarily on the
classical periodic orbits [36]. For a chaotic dot system, the pe-
riodic orbits are unstable, which accelerates relaxation of spin
polarization.

We have also examined graphene quantum dots with the
same cavity structures and found essentially the same results.
Our results have broad applications in developing devices
where robust maintenance of spin polarization is required.
This is because chaos plays the same role as disorder or edge
roughness in an experimental setup to provide randomness
in transport through quantum dots. In particular, as smaller
systems are becoming increasingly experimentally accessible
and are exploited for device applications, our results indicate
that when the system is smaller than the characteristic spin-
orbit length, disorders or edge roughness can be beneficial to
maintaining spin polarization.
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